Viewing file: acosh.c (5.17 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* mpfr_acosh -- inverse hyperbolic cosine
Copyright 2001-2020 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h"
/* The computation of acosh is done by * * acosh= ln(x + sqrt(x^2-1)) */
int mpfr_acosh (mpfr_ptr y, mpfr_srcptr x , mpfr_rnd_t rnd_mode) { MPFR_SAVE_EXPO_DECL (expo); int inexact; int comp;
MPFR_LOG_FUNC ( ("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode), ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact));
/* Deal with special cases */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { /* Nan, or zero or -Inf */ if (MPFR_IS_INF (x) && MPFR_IS_POS (x)) { MPFR_SET_INF (y); MPFR_SET_POS (y); MPFR_RET (0); } else /* Nan, or zero or -Inf */ { MPFR_SET_NAN (y); MPFR_RET_NAN; } } comp = mpfr_cmp_ui (x, 1); if (MPFR_UNLIKELY (comp < 0)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_UNLIKELY (comp == 0)) { MPFR_SET_ZERO (y); /* acosh(1) = +0 */ MPFR_SET_POS (y); MPFR_RET (0); } MPFR_SAVE_EXPO_MARK (expo);
/* General case */ { /* Declaration of the intermediary variables */ mpfr_t t; /* Declaration of the size variables */ mpfr_prec_t Ny = MPFR_PREC(y); /* Precision of output variable */ mpfr_prec_t Nt; /* Precision of the intermediary variable */ mpfr_exp_t err, exp_te, d; /* Precision of error */ MPFR_ZIV_DECL (loop);
/* compute the precision of intermediary variable */ /* the optimal number of bits : see algorithms.tex */ Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny);
/* initialization of intermediary variables */ mpfr_init2 (t, Nt);
/* First computation of acosh */ MPFR_ZIV_INIT (loop, Nt); for (;;) { MPFR_BLOCK_DECL (flags);
/* compute acosh */ MPFR_BLOCK (flags, mpfr_sqr (t, x, MPFR_RNDD)); /* x^2 */ if (MPFR_OVERFLOW (flags)) { mpfr_t ln2; mpfr_prec_t pln2;
/* As x is very large and the precision is not too large, we assume that we obtain the same result by evaluating ln(2x). We need to compute ln(x) + ln(2) as 2x can overflow. TODO: write a proof and add an MPFR_ASSERTN. */ mpfr_log (t, x, MPFR_RNDN); /* err(log) < 1/2 ulp(t) */ pln2 = Nt - MPFR_PREC_MIN < MPFR_GET_EXP (t) ? MPFR_PREC_MIN : Nt - MPFR_GET_EXP (t); mpfr_init2 (ln2, pln2); mpfr_const_log2 (ln2, MPFR_RNDN); /* err(ln2) < 1/2 ulp(t) */ mpfr_add (t, t, ln2, MPFR_RNDN); /* err <= 3/2 ulp(t) */ mpfr_clear (ln2); err = 1; } else { exp_te = MPFR_GET_EXP (t); mpfr_sub_ui (t, t, 1, MPFR_RNDD); /* x^2-1 */ if (MPFR_UNLIKELY (MPFR_IS_ZERO (t))) { /* This means that x is very close to 1: x = 1 + t with t < 2^(-Nt). We have: acosh(x) = sqrt(2t) (1 - eps(t)) with 0 < eps(t) < t / 12. */ mpfr_sub_ui (t, x, 1, MPFR_RNDD); /* t = x - 1 */ mpfr_mul_2ui (t, t, 1, MPFR_RNDN); /* 2t */ mpfr_sqrt (t, t, MPFR_RNDN); /* sqrt(2t) */ err = 1; } else { d = exp_te - MPFR_GET_EXP (t); mpfr_sqrt (t, t, MPFR_RNDN); /* sqrt(x^2-1) */ mpfr_add (t, t, x, MPFR_RNDN); /* sqrt(x^2-1)+x */ mpfr_log (t, t, MPFR_RNDN); /* ln(sqrt(x^2-1)+x) */
/* error estimate -- see algorithms.tex */ err = 3 + MAX (1, d) - MPFR_GET_EXP (t); /* error is bounded by 1/2 + 2^err <= 2^(max(0,1+err)) */ err = MAX (0, 1 + err); } }
if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - err, Ny, rnd_mode))) break;
/* reactualisation of the precision */ MPFR_ZIV_NEXT (loop, Nt); mpfr_set_prec (t, Nt); } MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, t, rnd_mode);
mpfr_clear (t); }
MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }
|