Viewing file: tsqr.c (6.31 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* tsqr -- test file for mpc_sqr.
Copyright (C) 2002, 2005, 2008, 2010, 2011, 2012, 2013 INRIA
This file is part of GNU MPC.
GNU MPC is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with this program. If not, see http://www.gnu.org/licenses/ . */
#include <stdlib.h> #include "mpc-tests.h"
static void cmpsqr (mpc_srcptr x, mpc_rnd_t rnd) /* computes the square of x with the specific function or by simple */ /* multiplication using the rounding mode rnd and compares the results */ /* and return values. */ /* In our current test suite, the real and imaginary parts of x have */ /* the same precision, and we use this precision also for the result. */ /* Furthermore, we check whether computing the square in the same */ /* place yields the same result. */ /* We also compute the result with four times the precision and check */ /* whether the rounding is correct. Error reports in this part of the */ /* algorithm might still be wrong, though, since there are two */ /* consecutive roundings. */ { mpc_t z, t, u; int inexact_z, inexact_t;
mpc_init2 (z, MPC_MAX_PREC (x)); mpc_init2 (t, MPC_MAX_PREC (x)); mpc_init2 (u, 4 * MPC_MAX_PREC (x));
inexact_z = mpc_sqr (z, x, rnd); inexact_t = mpc_mul (t, x, x, rnd);
if (mpc_cmp (z, t)) { fprintf (stderr, "sqr and mul differ for rnd=(%s,%s) \nx=", mpfr_print_rnd_mode(MPC_RND_RE(rnd)), mpfr_print_rnd_mode(MPC_RND_IM(rnd))); mpc_out_str (stderr, 2, 0, x, MPC_RNDNN); fprintf (stderr, "\nmpc_sqr gives "); mpc_out_str (stderr, 2, 0, z, MPC_RNDNN); fprintf (stderr, "\nmpc_mul gives "); mpc_out_str (stderr, 2, 0, t, MPC_RNDNN); fprintf (stderr, "\n"); exit (1); } if (inexact_z != inexact_t) { fprintf (stderr, "The return values of sqr and mul differ for rnd=(%s,%s) \nx= ", mpfr_print_rnd_mode(MPC_RND_RE(rnd)), mpfr_print_rnd_mode(MPC_RND_IM(rnd))); mpc_out_str (stderr, 2, 0, x, MPC_RNDNN); fprintf (stderr, "\nx^2="); mpc_out_str (stderr, 2, 0, z, MPC_RNDNN); fprintf (stderr, "\nmpc_sqr gives %i", inexact_z); fprintf (stderr, "\nmpc_mul gives %i", inexact_t); fprintf (stderr, "\n"); exit (1); }
mpc_set (t, x, MPC_RNDNN); inexact_t = mpc_sqr (t, t, rnd); if (mpc_cmp (z, t)) { fprintf (stderr, "sqr and sqr in place differ for rnd=(%s,%s) \nx=", mpfr_print_rnd_mode(MPC_RND_RE(rnd)), mpfr_print_rnd_mode(MPC_RND_IM(rnd))); mpc_out_str (stderr, 2, 0, x, MPC_RNDNN); fprintf (stderr, "\nmpc_sqr gives "); mpc_out_str (stderr, 2, 0, z, MPC_RNDNN); fprintf (stderr, "\nmpc_sqr in place gives "); mpc_out_str (stderr, 2, 0, t, MPC_RNDNN); fprintf (stderr, "\n"); exit (1); } if (inexact_z != inexact_t) { fprintf (stderr, "The return values of sqr and sqr in place differ for rnd=(%s,%s) \nx= ", mpfr_print_rnd_mode(MPC_RND_RE(rnd)), mpfr_print_rnd_mode(MPC_RND_IM(rnd))); mpc_out_str (stderr, 2, 0, x, MPC_RNDNN); fprintf (stderr, "\nx^2="); mpc_out_str (stderr, 2, 0, z, MPC_RNDNN); fprintf (stderr, "\nmpc_sqr gives %i", inexact_z); fprintf (stderr, "\nmpc_sqr in place gives %i", inexact_t); fprintf (stderr, "\n"); exit (1); }
mpc_sqr (u, x, rnd); mpc_set (t, u, rnd); if (mpc_cmp (z, t)) { fprintf (stderr, "rounding in sqr might be incorrect for rnd=(%s,%s) \nx=", mpfr_print_rnd_mode(MPC_RND_RE(rnd)), mpfr_print_rnd_mode(MPC_RND_IM(rnd))); mpc_out_str (stderr, 2, 0, x, MPC_RNDNN); fprintf (stderr, "\nmpc_sqr gives "); mpc_out_str (stderr, 2, 0, z, MPC_RNDNN); fprintf (stderr, "\nmpc_sqr quadruple precision gives "); mpc_out_str (stderr, 2, 0, u, MPC_RNDNN); fprintf (stderr, "\nand is rounded to "); mpc_out_str (stderr, 2, 0, t, MPC_RNDNN); fprintf (stderr, "\n"); exit (1); }
mpc_clear (z); mpc_clear (t); mpc_clear (u); }
static void testsqr (long a, long b, mpfr_prec_t prec, mpc_rnd_t rnd) { mpc_t x;
mpc_init2 (x, prec);
mpc_set_si_si (x, a, b, rnd);
cmpsqr (x, rnd);
mpc_clear (x); }
static void reuse_bug (void) { mpc_t z1;
/* reuse bug found by Paul Zimmermann 20081021 */ mpc_init2 (z1, 2); /* RE (z1^2) overflows, IM(z^2) = -0 */ mpfr_set_str (mpc_realref (z1), "0.11", 2, MPFR_RNDN); mpfr_mul_2si (mpc_realref (z1), mpc_realref (z1), mpfr_get_emax (), MPFR_RNDN); mpfr_set_ui (mpc_imagref (z1), 0, MPFR_RNDN); mpc_conj (z1, z1, MPC_RNDNN); mpc_sqr (z1, z1, MPC_RNDNN); if (!mpfr_inf_p (mpc_realref (z1)) || mpfr_signbit (mpc_realref (z1)) ||!mpfr_zero_p (mpc_imagref (z1)) || !mpfr_signbit (mpc_imagref (z1))) { printf ("Error: Regression, bug 20081021 reproduced\n"); MPC_OUT (z1); exit (1); }
mpc_clear (z1); }
#define MPC_FUNCTION_CALL \ P[0].mpc_inex = mpc_sqr (P[1].mpc, P[2].mpc, P[3].mpc_rnd) #define MPC_FUNCTION_CALL_REUSE_OP1 \ P[0].mpc_inex = mpc_sqr (P[1].mpc, P[1].mpc, P[3].mpc_rnd)
#include "data_check.tpl" #include "tgeneric.tpl"
int main (void) { test_start ();
testsqr (247, -65, 8, 24); testsqr (5, -896, 3, 2); testsqr (-3, -512, 2, 16); testsqr (266013312, 121990769, 27, 0); testsqr (170, 9, 8, 0); testsqr (768, 85, 8, 16); testsqr (145, 1816, 8, 24); testsqr (0, 1816, 8, 24); testsqr (145, 0, 8, 24);
data_check_template ("sqr.dsc", "sqr.dat");
tgeneric_template ("sqr.dsc", 2, 1024, 1, 1024);
reuse_bug ();
test_end ();
return 0; }
|