Viewing file: testsuite_allocator.h (24.86 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
// -*- C++ -*- // Testing allocator for the C++ library testsuite. // // Copyright (C) 2002-2022 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING3. If not see // <http://www.gnu.org/licenses/>. //
// This file provides an test instrumentation allocator that can be // used to verify allocation functionality of standard library // containers. 2002.11.25 smw
#ifndef _GLIBCXX_TESTSUITE_ALLOCATOR_H #define _GLIBCXX_TESTSUITE_ALLOCATOR_H
#include <bits/move.h> #include <ext/pointer.h> #include <ext/alloc_traits.h> #include <testsuite_hooks.h> #if __cplusplus >= 201703L # include <memory_resource> # include <new> #endif
#if __cplusplus >= 201103L # include <unordered_map> namespace unord = std; #else # include <tr1/unordered_map> namespace unord = std::tr1; #endif
namespace __gnu_test { // A common API for calling max_size() on an allocator in any -std mode. template<typename A> typename A::size_type max_size(const A& a) { #if __cplusplus >= 201103L return std::allocator_traits<A>::max_size(a); #else return a.max_size(); #endif }
class tracker_allocator_counter { public: typedef std::size_t size_type;
static void allocate(size_type blocksize) { allocationCount_ += blocksize; }
static void construct() { ++constructCount_; }
static void destroy() { ++destructCount_; }
static void deallocate(size_type blocksize) { deallocationCount_ += blocksize; }
static size_type get_allocation_count() { return allocationCount_; }
static size_type get_deallocation_count() { return deallocationCount_; }
static int get_construct_count() { return constructCount_; }
static int get_destruct_count() { return destructCount_; }
static void reset() { allocationCount_ = 0; deallocationCount_ = 0; constructCount_ = 0; destructCount_ = 0; }
private: static size_type allocationCount_; static size_type deallocationCount_; static int constructCount_; static int destructCount_; };
// Helper to detect inconsistency between type used to instantiate an // allocator and the underlying allocator value_type. template<typename T, typename Alloc, typename = typename Alloc::value_type> struct check_consistent_alloc_value_type;
template<typename T, typename Alloc> struct check_consistent_alloc_value_type<T, Alloc, T> { typedef T value_type; };
// An allocator facade that intercepts allocate/deallocate/construct/destroy // calls and track them through the tracker_allocator_counter class. This // class is templated on the target object type, but tracker isn't. template<typename T, typename Alloc = std::allocator<T> > class tracker_allocator : public Alloc { private: typedef tracker_allocator_counter counter_type;
typedef __gnu_cxx::__alloc_traits<Alloc> AllocTraits;
public: typedef typename check_consistent_alloc_value_type<T, Alloc>::value_type value_type; typedef typename AllocTraits::pointer pointer; typedef typename AllocTraits::size_type size_type;
template<class U> struct rebind { typedef tracker_allocator<U, typename AllocTraits::template rebind<U>::other> other; };
#if __cplusplus >= 201103L tracker_allocator() = default; tracker_allocator(const tracker_allocator&) = default; tracker_allocator(tracker_allocator&&) = default; tracker_allocator& operator=(const tracker_allocator&) = default; tracker_allocator& operator=(tracker_allocator&&) = default;
// Perfect forwarding constructor. template<typename... _Args> tracker_allocator(_Args&&... __args) : Alloc(std::forward<_Args>(__args)...) { } #else tracker_allocator() { }
tracker_allocator(const tracker_allocator&) { }
~tracker_allocator() { } #endif
template<class U> tracker_allocator(const tracker_allocator<U, typename AllocTraits::template rebind<U>::other>& alloc) _GLIBCXX_USE_NOEXCEPT : Alloc(alloc) { }
pointer allocate(size_type n, const void* = 0) { pointer p = AllocTraits::allocate(*this, n); counter_type::allocate(n * sizeof(T)); return p; }
#if __cplusplus >= 201103L template<typename U, typename... Args> void construct(U* p, Args&&... args) { AllocTraits::construct(*this, p, std::forward<Args>(args)...); counter_type::construct(); }
template<typename U> void destroy(U* p) { AllocTraits::destroy(*this, p); counter_type::destroy(); } #else void construct(pointer p, const T& value) { AllocTraits::construct(*this, p, value); counter_type::construct(); }
void destroy(pointer p) { AllocTraits::destroy(*this, p); counter_type::destroy(); } #endif
void deallocate(pointer p, size_type num) { counter_type::deallocate(num * sizeof(T)); AllocTraits::deallocate(*this, p, num); }
// Implement swap for underlying allocators that might need it. friend inline void swap(tracker_allocator& a, tracker_allocator& b) { using std::swap;
Alloc& aa = a; Alloc& ab = b; swap(aa, ab); } };
template<class T1, class Alloc1, class T2, class Alloc2> bool operator==(const tracker_allocator<T1, Alloc1>& lhs, const tracker_allocator<T2, Alloc2>& rhs) throw() { const Alloc1& alloc1 = lhs; const Alloc2& alloc2 = rhs; return alloc1 == alloc2; }
template<class T1, class Alloc1, class T2, class Alloc2> bool operator!=(const tracker_allocator<T1, Alloc1>& lhs, const tracker_allocator<T2, Alloc2>& rhs) throw() { return !(lhs == rhs); }
bool check_construct_destroy(const char* tag, int expected_c, int expected_d);
template<typename Alloc> bool check_deallocate_null() { // Let's not core here... Alloc a; a.deallocate(0, 1); a.deallocate(0, 10); return true; }
#if __cpp_exceptions template<typename Alloc> bool check_allocate_max_size() { Alloc a; try { (void) a.allocate(__gnu_test::max_size(a) + 1); } catch(std::bad_alloc&) { return true; } catch(...) { throw; } throw; } #endif
// A simple allocator which can be constructed endowed of a given // "personality" (an integer), queried in operator== to simulate the // behavior of realworld "unequal" allocators (i.e., not exploiting // the provision in 20.1.5/4, first bullet). A global unordered_map, // filled at allocation time with (pointer, personality) pairs, is // then consulted to enforce the requirements in Table 32 about // deallocation vs allocator equality. Note that this allocator is // swappable, not copy assignable, consistently with Option 3 of DR 431 // (see N1599). struct uneq_allocator_base { typedef unord::unordered_map<void*, int> map_type;
// Avoid static initialization troubles and/or bad interactions // with tests linking testsuite_allocator.o and playing globally // with operator new/delete. static map_type& get_map() { static map_type alloc_map; return alloc_map; } };
template<typename Tp, typename Alloc = std::allocator<Tp> > class uneq_allocator : private uneq_allocator_base, public Alloc { typedef __gnu_cxx::__alloc_traits<Alloc> AllocTraits;
Alloc& base() { return *this; } const Alloc& base() const { return *this; } void swap_base(Alloc& b) { using std::swap; swap(b, this->base()); }
public: typedef typename check_consistent_alloc_value_type<Tp, Alloc>::value_type value_type; typedef typename AllocTraits::size_type size_type; typedef typename AllocTraits::pointer pointer;
#if __cplusplus >= 201103L typedef std::true_type propagate_on_container_swap; typedef std::false_type is_always_equal; #endif
template<typename Tp1> struct rebind { typedef uneq_allocator<Tp1, typename AllocTraits::template rebind<Tp1>::other> other; };
uneq_allocator() _GLIBCXX_USE_NOEXCEPT : personality(0) { }
uneq_allocator(int person) _GLIBCXX_USE_NOEXCEPT : personality(person) { }
#if __cplusplus >= 201103L uneq_allocator(const uneq_allocator&) = default; uneq_allocator(uneq_allocator&&) = default; #endif
template<typename Tp1> uneq_allocator(const uneq_allocator<Tp1, typename AllocTraits::template rebind<Tp1>::other>& b) _GLIBCXX_USE_NOEXCEPT : personality(b.get_personality()) { }
~uneq_allocator() _GLIBCXX_USE_NOEXCEPT { }
int get_personality() const { return personality; }
pointer allocate(size_type n, const void* = 0) { pointer p = AllocTraits::allocate(*this, n);
try { get_map().insert(map_type::value_type(reinterpret_cast<void*>(p), personality)); } catch(...) { AllocTraits::deallocate(*this, p, n); __throw_exception_again; }
return p; }
void deallocate(pointer p, size_type n) { VERIFY( p );
map_type::iterator it = get_map().find(reinterpret_cast<void*>(p)); VERIFY( it != get_map().end() );
// Enforce requirements in Table 32 about deallocation vs // allocator equality. VERIFY( it->second == personality );
get_map().erase(it); AllocTraits::deallocate(*this, p, n); }
#if __cplusplus >= 201103L // Not copy assignable... uneq_allocator& operator=(const uneq_allocator&) = delete;
// ... but still moveable if base allocator is. uneq_allocator& operator=(uneq_allocator&&) = default; #else private: // Not assignable... uneq_allocator& operator=(const uneq_allocator&); #endif
private: // ... yet swappable! friend inline void swap(uneq_allocator& a, uneq_allocator& b) { std::swap(a.personality, b.personality); a.swap_base(b); }
template<typename Tp1> friend inline bool operator==(const uneq_allocator& a, const uneq_allocator<Tp1, typename AllocTraits::template rebind<Tp1>::other>& b) { return a.personality == b.personality; }
template<typename Tp1> friend inline bool operator!=(const uneq_allocator& a, const uneq_allocator<Tp1, typename AllocTraits::template rebind<Tp1>::other>& b) { return !(a == b); }
int personality; };
#if __cplusplus >= 201103L // An uneq_allocator which can be used to test allocator propagation. template<typename Tp, bool Propagate, typename Alloc = std::allocator<Tp>> class propagating_allocator : public uneq_allocator<Tp, Alloc> { typedef __gnu_cxx::__alloc_traits<Alloc> AllocTraits;
typedef uneq_allocator<Tp, Alloc> base_alloc; base_alloc& base() { return *this; } const base_alloc& base() const { return *this; } void swap_base(base_alloc& b) { swap(b, this->base()); }
typedef std::integral_constant<bool, Propagate> trait_type;
public: // default allocator_traits::rebind_alloc would select // uneq_allocator::rebind so we must define rebind here template<typename Up> struct rebind { typedef propagating_allocator<Up, Propagate, typename AllocTraits::template rebind<Up>::other> other; };
propagating_allocator(int i) noexcept : base_alloc(i) { }
template<typename Up> propagating_allocator(const propagating_allocator<Up, Propagate, typename AllocTraits::template rebind<Up>::other>& a) noexcept : base_alloc(a) { }
propagating_allocator() noexcept = default;
propagating_allocator(const propagating_allocator&) noexcept = default;
propagating_allocator& operator=(const propagating_allocator& a) noexcept { static_assert(Propagate, "assigning propagating_allocator<T, true>"); propagating_allocator(a).swap_base(*this); return *this; }
template<bool P2> propagating_allocator& operator=(const propagating_allocator<Tp, P2, Alloc>& a) noexcept { static_assert(P2, "assigning propagating_allocator<T, true>"); propagating_allocator(a).swap_base(*this); return *this; }
// postcondition: LWG2593 a.get_personality() un-changed. propagating_allocator(propagating_allocator&& a) noexcept : base_alloc(std::move(a.base())) { }
// postcondition: LWG2593 a.get_personality() un-changed propagating_allocator& operator=(propagating_allocator&& a) noexcept { propagating_allocator(std::move(a)).swap_base(*this); return *this; }
typedef trait_type propagate_on_container_copy_assignment; typedef trait_type propagate_on_container_move_assignment; typedef trait_type propagate_on_container_swap;
propagating_allocator select_on_container_copy_construction() const { return Propagate ? *this : propagating_allocator(); } };
// Class template supporting the minimal interface that satisfies the // Allocator requirements, from example in [allocator.requirements] template <class Tp> struct SimpleAllocator { typedef Tp value_type;
constexpr SimpleAllocator() noexcept { }
template <class T> SimpleAllocator(const SimpleAllocator<T>&) { }
Tp *allocate(std::size_t n) { return std::allocator<Tp>().allocate(n); }
void deallocate(Tp *p, std::size_t n) { std::allocator<Tp>().deallocate(p, n); } };
template <class T, class U> bool operator==(const SimpleAllocator<T>&, const SimpleAllocator<U>&) { return true; } template <class T, class U> bool operator!=(const SimpleAllocator<T>&, const SimpleAllocator<U>&) { return false; }
template<typename T> struct default_init_allocator { using value_type = T;
default_init_allocator() = default;
template<typename U> default_init_allocator(const default_init_allocator<U>& a) : state(a.state) { }
T* allocate(std::size_t n) { return std::allocator<T>().allocate(n); }
void deallocate(T* p, std::size_t n) { std::allocator<T>().deallocate(p, n); }
int state; };
template<typename T, typename U> bool operator==(const default_init_allocator<T>& t, const default_init_allocator<U>& u) { return t.state == u.state; }
template<typename T, typename U> bool operator!=(const default_init_allocator<T>& t, const default_init_allocator<U>& u) { return !(t == u); } #endif
template<typename Tp> struct ExplicitConsAlloc : std::allocator<Tp> { ExplicitConsAlloc() { }
template<typename Up> explicit ExplicitConsAlloc(const ExplicitConsAlloc<Up>&) { }
template<typename Up> struct rebind { typedef ExplicitConsAlloc<Up> other; }; };
#if __cplusplus >= 201103L template<typename Tp> class CustomPointerAlloc : public std::allocator<Tp> { template<typename Up, typename Sp = __gnu_cxx::_Std_pointer_impl<Up>> using Ptr = __gnu_cxx::_Pointer_adapter<Sp>;
public: CustomPointerAlloc() = default;
template<typename Up> CustomPointerAlloc(const CustomPointerAlloc<Up>&) { }
template<typename Up> struct rebind { typedef CustomPointerAlloc<Up> other; };
typedef Ptr<Tp> pointer; typedef Ptr<const Tp> const_pointer; typedef Ptr<void> void_pointer; typedef Ptr<const void> const_void_pointer;
pointer allocate(std::size_t n, const_void_pointer = {}) { return pointer(std::allocator<Tp>::allocate(n)); }
void deallocate(pointer p, std::size_t n) { std::allocator<Tp>::deallocate(std::addressof(*p), n); } };
// A class type meeting *only* the Cpp17NullablePointer requirements. // Can be used as a base class for fancy pointers (like PointerBase, below) // or to wrap a built-in pointer type to remove operations not required // by the Cpp17NullablePointer requirements (dereference, increment etc.) template<typename Ptr> struct NullablePointer { // N.B. default constructor does not initialize value NullablePointer() = default; NullablePointer(std::nullptr_t) noexcept : value() { }
explicit operator bool() const noexcept { return value != nullptr; }
friend inline bool operator==(NullablePointer lhs, NullablePointer rhs) noexcept { return lhs.value == rhs.value; }
friend inline bool operator!=(NullablePointer lhs, NullablePointer rhs) noexcept { return lhs.value != rhs.value; }
protected: explicit NullablePointer(Ptr p) noexcept : value(p) { } Ptr value; };
// NullablePointer<void> is an empty type that models Cpp17NullablePointer. template<> struct NullablePointer<void> { NullablePointer() = default; NullablePointer(std::nullptr_t) noexcept { } explicit NullablePointer(const volatile void*) noexcept { }
explicit operator bool() const noexcept { return false; }
friend inline bool operator==(NullablePointer, NullablePointer) noexcept { return true; }
friend inline bool operator!=(NullablePointer, NullablePointer) noexcept { return false; } };
// Utility for use as CRTP base class of custom pointer types template<typename Derived, typename T> struct PointerBase : NullablePointer<T*> { typedef T element_type;
// typedefs for iterator_traits typedef T value_type; typedef std::ptrdiff_t difference_type; typedef std::random_access_iterator_tag iterator_category; typedef Derived pointer; typedef T& reference;
using NullablePointer<T*>::NullablePointer;
// Public (but explicit) constructor from raw pointer: explicit PointerBase(T* p) noexcept : NullablePointer<T*>(p) { }
template<typename D, typename U, typename = decltype(static_cast<T*>(std::declval<U*>()))> PointerBase(const PointerBase<D, U>& p) : NullablePointer<T*>(p.operator->()) { }
T& operator*() const { return *this->value; } T* operator->() const { return this->value; } T& operator[](difference_type n) const { return this->value[n]; }
Derived& operator++() { ++this->value; return derived(); } Derived& operator--() { --this->value; return derived(); }
Derived operator++(int) { return Derived(this->value++); }
Derived operator--(int) { return Derived(this->value--); }
Derived& operator+=(difference_type n) { this->value += n; return derived(); }
Derived& operator-=(difference_type n) { this->value -= n; return derived(); }
Derived operator+(difference_type n) const { Derived p(derived()); return p += n; }
Derived operator-(difference_type n) const { Derived p(derived()); return p -= n; }
private: friend std::ptrdiff_t operator-(PointerBase l, PointerBase r) { return l.value - r.value; }
Derived& derived() { return static_cast<Derived&>(*this); }
const Derived& derived() const { return static_cast<const Derived&>(*this); } };
// implementation for pointer-to-void specializations template<typename T> struct PointerBase_void : NullablePointer<T*> { typedef T element_type;
// typedefs for iterator_traits typedef T value_type; typedef std::ptrdiff_t difference_type; typedef std::random_access_iterator_tag iterator_category;
using NullablePointer<T*>::NullablePointer;
T* operator->() const { return this->value; }
template<typename D, typename U, typename = decltype(static_cast<T*>(std::declval<U*>()))> PointerBase_void(const PointerBase<D, U>& p) : NullablePointer<T*>(p.operator->()) { } };
template<typename Derived> struct PointerBase<Derived, void> : PointerBase_void<void> { using PointerBase_void::PointerBase_void; typedef Derived pointer; };
template<typename Derived> struct PointerBase<Derived, const void> : PointerBase_void<const void> { using PointerBase_void::PointerBase_void; typedef Derived pointer; }; #endif // C++11
#if __cplusplus >= 201703L #if __cpp_aligned_new // A concrete memory_resource, with error checking. class memory_resource : public std::pmr::memory_resource { public: memory_resource() : lists(new allocation_lists) { }
memory_resource(const memory_resource& r) noexcept : lists(r.lists) { lists->refcount++; }
memory_resource& operator=(const memory_resource&) = delete;
~memory_resource() { if (lists->refcount-- == 1) delete lists; // last one out turns out the lights }
struct bad_size { }; struct bad_alignment { }; struct bad_address { };
// Deallocate everything (moving the tracking info to the freed list) void deallocate_everything() { while (lists->active) { auto a = lists->active; // Intentionally virtual dispatch, to inform derived classes: this->do_deallocate(a->p, a->bytes, a->alignment); } }
// Clear the freed list void forget_freed_allocations() { lists->forget_allocations(lists->freed); }
// Count how many allocations have been done and not freed. std::size_t number_of_active_allocations() const noexcept { std::size_t n = 0; for (auto a = lists->active; a != nullptr; a = a->next) ++n; return n; }
protected: void* do_allocate(std::size_t bytes, std::size_t alignment) override { // TODO perform a single allocation and put the allocation struct // in the buffer using placement new? It means deallocation won't // actually return memory to the OS, as it will stay in lists->freed. // // TODO adjust the returned pointer to be minimally aligned? // e.g. if alignment==1 don't return something aligned to 2 bytes. // Maybe not worth it, at least monotonic_buffer_resource will // never ask upstream for anything with small alignment. void* p = ::operator new(bytes, std::align_val_t(alignment)); lists->active = new allocation{p, bytes, alignment, lists->active}; return p; }
void do_deallocate(void* p, std::size_t bytes, std::size_t alignment) override { allocation** aptr = &lists->active; while (*aptr) { allocation* a = *aptr; if (p == a->p) { if (bytes != a->bytes) _S_throw<bad_size>(); if (alignment != a->alignment) _S_throw<bad_alignment>(); #if __cpp_sized_deallocation ::operator delete(p, bytes, std::align_val_t(alignment)); #else ::operator delete(p, std::align_val_t(alignment)); #endif *aptr = a->next; a->next = lists->freed; lists->freed = a; return; } aptr = &a->next; } _S_throw<bad_address>(); }
bool do_is_equal(const std::pmr::memory_resource& r) const noexcept override { #if __cpp_rtti // Equality is determined by sharing the same allocation_lists object. if (auto p = dynamic_cast<const memory_resource*>(&r)) return p->lists == lists; #else if (this == &r) // Is this the best we can do without RTTI? return true; #endif return false; }
private: template<typename E> static void _S_throw() { #if __cpp_exceptions throw E(); #else __builtin_abort(); #endif }
struct allocation { void* p; std::size_t bytes; std::size_t alignment; allocation* next; };
// Maintain list of allocated blocks and list of freed blocks. // Copies of this memory_resource share the same ref-counted lists. struct allocation_lists { unsigned refcount = 1; allocation* active = nullptr; allocation* freed = nullptr;
void forget_allocations(allocation*& list) { while (list) { auto p = list; list = list->next; delete p; } }
~allocation_lists() { forget_allocations(active); // Anything in this list is a leak! forget_allocations(freed); } };
allocation_lists* lists; }; #endif // aligned-new
// Set the default resource, and restore the previous one on destruction. struct default_resource_mgr { explicit default_resource_mgr(std::pmr::memory_resource* r) : prev(std::pmr::set_default_resource(r)) { }
~default_resource_mgr() { std::pmr::set_default_resource(prev); }
std::pmr::memory_resource* prev; };
#endif // C++17
} // namespace __gnu_test
#endif // _GLIBCXX_TESTSUITE_ALLOCATOR_H
|