Viewing file: hwasan_fuchsia.cpp (7.92 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===-- hwasan_fuchsia.cpp --------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file is a part of HWAddressSanitizer and contains Fuchsia-specific /// code. /// //===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_fuchsia.h" #if SANITIZER_FUCHSIA
#include "hwasan.h" #include "hwasan_interface_internal.h" #include "hwasan_report.h" #include "hwasan_thread.h" #include "hwasan_thread_list.h"
// This TLS variable contains the location of the stack ring buffer and can be // used to always find the hwasan thread object associated with the current // running thread. [[gnu::tls_model("initial-exec")]] SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL uptr __hwasan_tls;
namespace __hwasan {
bool InitShadow() { __sanitizer::InitShadowBounds(); CHECK_NE(__sanitizer::ShadowBounds.shadow_limit, 0);
// These variables are used by MemIsShadow for asserting we have a correct // shadow address. On Fuchsia, we only have one region of shadow, so the // bounds of Low shadow can be zero while High shadow represents the true // bounds. Note that these are inclusive ranges. kLowShadowStart = 0; kLowShadowEnd = 0; kHighShadowStart = __sanitizer::ShadowBounds.shadow_base; kHighShadowEnd = __sanitizer::ShadowBounds.shadow_limit - 1;
return true; }
bool MemIsApp(uptr p) { CHECK(GetTagFromPointer(p) == 0); return __sanitizer::ShadowBounds.shadow_limit <= p && p <= (__sanitizer::ShadowBounds.memory_limit - 1); }
// These are known parameters passed to the hwasan runtime on thread creation. struct Thread::InitState { uptr stack_bottom, stack_top; };
static void FinishThreadInitialization(Thread *thread);
void InitThreads() { // This is the minimal alignment needed for the storage where hwasan threads // and their stack ring buffers are placed. This alignment is necessary so the // stack ring buffer can perform a simple calculation to get the next element // in the RB. The instructions for this calculation are emitted by the // compiler. (Full explanation in hwasan_thread_list.h.) uptr alloc_size = UINT64_C(1) << kShadowBaseAlignment; uptr thread_start = reinterpret_cast<uptr>( MmapAlignedOrDieOnFatalError(alloc_size, alloc_size, __func__));
InitThreadList(thread_start, alloc_size);
// Create the hwasan thread object for the current (main) thread. Stack info // for this thread is known from information passed via // __sanitizer_startup_hook. const Thread::InitState state = { .stack_bottom = __sanitizer::MainThreadStackBase, .stack_top = __sanitizer::MainThreadStackBase + __sanitizer::MainThreadStackSize, }; FinishThreadInitialization(hwasanThreadList().CreateCurrentThread(&state)); }
uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; }
// This is called from the parent thread before the new thread is created. Here // we can propagate known info like the stack bounds to Thread::Init before // jumping into the thread. We cannot initialize the stack ring buffer yet since // we have not entered the new thread. static void *BeforeThreadCreateHook(uptr user_id, bool detached, const char *name, uptr stack_bottom, uptr stack_size) { const Thread::InitState state = { .stack_bottom = stack_bottom, .stack_top = stack_bottom + stack_size, }; return hwasanThreadList().CreateCurrentThread(&state); }
// This sets the stack top and bottom according to the InitState passed to // CreateCurrentThread above. void Thread::InitStackAndTls(const InitState *state) { CHECK_NE(state->stack_bottom, 0); CHECK_NE(state->stack_top, 0); stack_bottom_ = state->stack_bottom; stack_top_ = state->stack_top; tls_end_ = tls_begin_ = 0; }
// This is called after creating a new thread with the pointer returned by // BeforeThreadCreateHook. We are still in the creating thread and should check // if it was actually created correctly. static void ThreadCreateHook(void *hook, bool aborted) { Thread *thread = static_cast<Thread *>(hook); if (!aborted) { // The thread was created successfully. // ThreadStartHook can already be running in the new thread. } else { // The thread wasn't created after all. // Clean up everything we set up in BeforeThreadCreateHook. atomic_signal_fence(memory_order_seq_cst); hwasanThreadList().ReleaseThread(thread); } }
// This is called in the newly-created thread before it runs anything else, // with the pointer returned by BeforeThreadCreateHook (above). Here we can // setup the stack ring buffer. static void ThreadStartHook(void *hook, thrd_t self) { Thread *thread = static_cast<Thread *>(hook); FinishThreadInitialization(thread); thread->EnsureRandomStateInited(); }
// This is the function that sets up the stack ring buffer and enables us to use // GetCurrentThread. This function should only be called while IN the thread // that we want to create the hwasan thread object for so __hwasan_tls can be // properly referenced. static void FinishThreadInitialization(Thread *thread) { CHECK_NE(thread, nullptr);
// The ring buffer is located immediately before the thread object. uptr stack_buffer_size = hwasanThreadList().GetRingBufferSize(); uptr stack_buffer_start = reinterpret_cast<uptr>(thread) - stack_buffer_size; thread->InitStackRingBuffer(stack_buffer_start, stack_buffer_size); }
static void ThreadExitHook(void *hook, thrd_t self) { Thread *thread = static_cast<Thread *>(hook); atomic_signal_fence(memory_order_seq_cst); hwasanThreadList().ReleaseThread(thread); }
uptr TagMemoryAligned(uptr p, uptr size, tag_t tag) { CHECK(IsAligned(p, kShadowAlignment)); CHECK(IsAligned(size, kShadowAlignment)); __sanitizer_fill_shadow(p, size, tag, common_flags()->clear_shadow_mmap_threshold); return AddTagToPointer(p, tag); }
// Not implemented because Fuchsia does not use signal handlers. void HwasanOnDeadlySignal(int signo, void *info, void *context) {}
// Not implemented because Fuchsia does not use interceptors. void InitializeInterceptors() {}
// Not implemented because this is only relevant for Android. void AndroidTestTlsSlot() {}
// TSD was normally used on linux as a means of calling the hwasan thread exit // handler passed to pthread_key_create. This is not needed on Fuchsia because // we will be using __sanitizer_thread_exit_hook. void HwasanTSDInit() {} void HwasanTSDThreadInit() {}
// On linux, this just would call `atexit(HwasanAtExit)`. The functions in // HwasanAtExit are unimplemented for Fuchsia and effectively no-ops, so this // function is unneeded. void InstallAtExitHandler() {}
void HwasanInstallAtForkHandler() {}
// TODO(fxbug.dev/81499): Once we finalize the tagged pointer ABI in zircon, we should come back // here and implement the appropriate check that TBI is enabled. void InitializeOsSupport() {}
} // namespace __hwasan
extern "C" {
void *__sanitizer_before_thread_create_hook(thrd_t thread, bool detached, const char *name, void *stack_base, size_t stack_size) { return __hwasan::BeforeThreadCreateHook( reinterpret_cast<uptr>(thread), detached, name, reinterpret_cast<uptr>(stack_base), stack_size); }
void __sanitizer_thread_create_hook(void *hook, thrd_t thread, int error) { __hwasan::ThreadCreateHook(hook, error != thrd_success); }
void __sanitizer_thread_start_hook(void *hook, thrd_t self) { __hwasan::ThreadStartHook(hook, reinterpret_cast<uptr>(self)); }
void __sanitizer_thread_exit_hook(void *hook, thrd_t self) { __hwasan::ThreadExitHook(hook, self); }
} // extern "C"
#endif // SANITIZER_FUCHSIA
|