Viewing file: remquoq.c (2.49 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* Compute remainder and a congruent to the quotient. Copyright (C) 1997-2018 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and Jakub Jelinek <jj@ultra.linux.cz>, 1999.
The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see <http://www.gnu.org/licenses/>. */
#include "quadmath-imp.h"
static const __float128 zero = 0.0;
__float128 remquoq (__float128 x, __float128 y, int *quo) { int64_t hx,hy; uint64_t sx,lx,ly,qs; int cquo;
GET_FLT128_WORDS64 (hx, lx, x); GET_FLT128_WORDS64 (hy, ly, y); sx = hx & 0x8000000000000000ULL; qs = sx ^ (hy & 0x8000000000000000ULL); hy &= 0x7fffffffffffffffLL; hx &= 0x7fffffffffffffffLL;
/* Purge off exception values. */ if ((hy | ly) == 0) return (x * y) / (x * y); /* y = 0 */ if ((hx >= 0x7fff000000000000LL) /* x not finite */ || ((hy >= 0x7fff000000000000LL) /* y is NaN */ && (((hy - 0x7fff000000000000LL) | ly) != 0))) return (x * y) / (x * y);
if (hy <= 0x7ffbffffffffffffLL) x = fmodq (x, 8 * y); /* now x < 8y */
if (((hx - hy) | (lx - ly)) == 0) { *quo = qs ? -1 : 1; return zero * x; }
x = fabsq (x); y = fabsq (y); cquo = 0;
if (hy <= 0x7ffcffffffffffffLL && x >= 4 * y) { x -= 4 * y; cquo += 4; } if (hy <= 0x7ffdffffffffffffLL && x >= 2 * y) { x -= 2 * y; cquo += 2; }
if (hy < 0x0002000000000000LL) { if (x + x > y) { x -= y; ++cquo; if (x + x >= y) { x -= y; ++cquo; } } } else { __float128 y_half = 0.5Q * y; if (x > y_half) { x -= y; ++cquo; if (x >= y_half) { x -= y; ++cquo; } } }
*quo = qs ? -cquo : cquo;
/* Ensure correct sign of zero result in round-downward mode. */ if (x == 0) x = 0; if (sx) x = -x; return x; }
|