Viewing file: csinhq.c (3.61 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* Complex sine hyperbole function for float types. Copyright (C) 1997-2018 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see <http://www.gnu.org/licenses/>. */
#include "quadmath-imp.h"
__complex128 csinhq (__complex128 x) { __complex128 retval; int negate = signbitq (__real__ x); int rcls = fpclassifyq (__real__ x); int icls = fpclassifyq (__imag__ x);
__real__ x = fabsq (__real__ x);
if (__glibc_likely (rcls >= QUADFP_ZERO)) { /* Real part is finite. */ if (__glibc_likely (icls >= QUADFP_ZERO)) { /* Imaginary part is finite. */ const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q); __float128 sinix, cosix;
if (__glibc_likely (fabsq (__imag__ x) > FLT128_MIN)) { sincosq (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1; }
if (negate) cosix = -cosix;
if (fabsq (__real__ x) > t) { __float128 exp_t = expq (t); __float128 rx = fabsq (__real__ x); if (signbitq (__real__ x)) cosix = -cosix; rx -= t; sinix *= exp_t / 2; cosix *= exp_t / 2; if (rx > t) { rx -= t; sinix *= exp_t; cosix *= exp_t; } if (rx > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = FLT128_MAX * cosix; __imag__ retval = FLT128_MAX * sinix; } else { __float128 exp_val = expq (rx); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } } else { __real__ retval = sinhq (__real__ x) * cosix; __imag__ retval = coshq (__real__ x) * sinix; }
math_check_force_underflow_complex (retval); } else { if (rcls == QUADFP_ZERO) { /* Real part is 0.0. */ __real__ retval = copysignq (0, negate ? -1 : 1); __imag__ retval = __imag__ x - __imag__ x; } else { __real__ retval = nanq (""); __imag__ retval = nanq ("");
feraiseexcept (FE_INVALID); } } } else if (rcls == QUADFP_INFINITE) { /* Real part is infinite. */ if (__glibc_likely (icls > QUADFP_ZERO)) { /* Imaginary part is finite. */ __float128 sinix, cosix;
if (__glibc_likely (fabsq (__imag__ x) > FLT128_MIN)) { sincosq (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1; }
__real__ retval = copysignq (HUGE_VALQ, cosix); __imag__ retval = copysignq (HUGE_VALQ, sinix);
if (negate) __real__ retval = -__real__ retval; } else if (icls == QUADFP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = negate ? -HUGE_VALQ : HUGE_VALQ; __imag__ retval = __imag__ x; } else { __real__ retval = HUGE_VALQ; __imag__ retval = __imag__ x - __imag__ x; } } else { __real__ retval = nanq (""); __imag__ retval = __imag__ x == 0 ? __imag__ x : nanq (""); }
return retval; }
|