Viewing file: runtime_c.c (5.71 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file.
#include <errno.h> #include <signal.h> #include <unistd.h>
#if defined(__i386__) || defined(__x86_64__) #include <cpuid.h> #endif
#ifdef __linux__ #include <syscall.h> #endif
#include "config.h"
#include "runtime.h" #include "arch.h" #include "array.h"
int32 runtime_atoi(const byte *p, intgo len) { int32 n;
n = 0; while(len > 0 && '0' <= *p && *p <= '9') { n = n*10 + *p++ - '0'; len--; } return n; }
// A random number from the GNU/Linux auxv array. static uint32 randomNumber;
// Set the random number from Go code.
void setRandomNumber(uint32 r) { randomNumber = r; }
#if defined(__i386__) || defined(__x86_64__) || defined (__s390__) || defined (__s390x__)
// When cputicks is just asm instructions, skip the split stack // prologue for speed.
int64 runtime_cputicks(void) __attribute__((no_split_stack));
#endif
// Whether the processor supports SSE2. #if defined (__i386__) static _Bool hasSSE2;
// Force appropriate CPU level so that we can call the lfence/mfence // builtins.
#pragma GCC push_options #pragma GCC target("sse2")
#elif defined(__x86_64__) #define hasSSE2 true #endif
#if defined(__i386__) || defined(__x86_64__) // Whether to use lfence, as opposed to mfence. // Set based on cpuid. static _Bool lfenceBeforeRdtsc; #endif // defined(__i386__) || defined(__x86_64__)
int64 runtime_cputicks(void) { #if defined(__i386__) || defined(__x86_64__) if (hasSSE2) { if (lfenceBeforeRdtsc) { __builtin_ia32_lfence(); } else { __builtin_ia32_mfence(); } } return __builtin_ia32_rdtsc(); #elif defined (__s390__) || defined (__s390x__) uint64 clock = 0; /* stckf may not write the return variable in case of a clock error, so make it read-write to prevent that the initialisation is optimised out. Note: Targets below z9-109 will crash when executing store clock fast, i.e. we don't support Go for machines older than that. */ asm volatile(".insn s,0xb27c0000,%0" /* stckf */ : "+Q" (clock) : : "cc" ); return (int64)clock; #else // Currently cputicks() is used in blocking profiler and to seed runtime·fastrand(). // runtime·nanotime() is a poor approximation of CPU ticks that is enough for the profiler. // randomNumber provides better seeding of fastrand. return runtime_nanotime1() + randomNumber; #endif }
#if defined(__i386__) #pragma GCC pop_options #endif
void runtime_signalstack(byte *p, uintptr n) { stack_t st;
st.ss_sp = p; st.ss_size = n; st.ss_flags = 0; if(p == nil) st.ss_flags = SS_DISABLE; if(sigaltstack(&st, nil) < 0) abort(); }
int32 go_open(char *, int32, int32) __asm__ (GOSYM_PREFIX "runtime.open");
int32 go_open(char *name, int32 mode, int32 perm) { return runtime_open(name, mode, perm); }
int32 go_read(int32, void *, int32) __asm__ (GOSYM_PREFIX "runtime.read");
int32 go_read(int32 fd, void *p, int32 n) { ssize_t r = runtime_read(fd, p, n); if (r < 0) r = - errno; return (int32)r; }
int32 go_write1(uintptr, void *, int32) __asm__ (GOSYM_PREFIX "runtime.write1");
int32 go_write1(uintptr fd, void *p, int32 n) { ssize_t r = runtime_write(fd, p, n); if (r < 0) r = - errno; return (int32)r; }
int32 go_closefd(int32) __asm__ (GOSYM_PREFIX "runtime.closefd");
int32 go_closefd(int32 fd) { return runtime_close(fd); }
intgo go_errno(void) __asm__ (GOSYM_PREFIX "runtime.errno");
intgo go_errno() { return (intgo)errno; }
uintptr getEnd(void) __asm__ (GOSYM_PREFIX "runtime.getEnd");
uintptr getEnd() { #ifdef _AIX // mmap adresses range start at 0x30000000 on AIX for 32 bits processes uintptr end = 0x30000000U; #else uintptr end = 0; uintptr *pend;
pend = &__go_end; if (pend != nil) { end = *pend; } #endif
return end; }
// Return an address that is before the read-only data section. // Unfortunately there is no standard symbol for this so we use a text // address.
uintptr getText(void) __asm__ (GOSYM_PREFIX "runtime.getText");
extern void main_main(void*) __asm__(GOSYM_PREFIX "main.main");
uintptr getText(void) { return (uintptr)(const void *)(main_main); }
// Return the end of the text segment, assumed to come after the // read-only data section.
uintptr getEtext(void) __asm__ (GOSYM_PREFIX "runtime.getEtext");
uintptr getEtext(void) { const void *p;
p = __data_start; if (p == nil) p = __etext; if (p == nil) p = _etext; return (uintptr)(p); }
// Return the start of the BSS section.
uintptr getBSS(void) __asm__ (GOSYM_PREFIX "runtime.getBSS");
uintptr getBSS(void) { const void *p;
p = __edata; if (p == NULL) p = _edata; if (p == NULL) p = __bss_start; return (uintptr)(p); }
// CPU-specific initialization. // Fetch CPUID info on x86.
void runtime_cpuinit() { #if defined(__i386__) || defined(__x86_64__) unsigned int eax, ebx, ecx, edx;
if (__get_cpuid(0, &eax, &ebx, &ecx, &edx)) { if (eax != 0 && ebx == 0x756E6547 // "Genu" && edx == 0x49656E69 // "ineI" && ecx == 0x6C65746E) { // "ntel" lfenceBeforeRdtsc = true; } } if (__get_cpuid(1, &eax, &ebx, &ecx, &edx)) { #if defined(__i386__) if ((edx & bit_SSE2) != 0) { hasSSE2 = true; } #endif }
#if defined(HAVE_AS_X86_AES) setSupportAES(true); #endif #endif }
// A publication barrier: a store/store barrier.
void publicationBarrier(void) __asm__ (GOSYM_PREFIX "runtime.publicationBarrier");
void publicationBarrier() { __atomic_thread_fence(__ATOMIC_RELEASE); }
#ifdef __linux__
/* Currently sbrk0 is only called on GNU/Linux. */
uintptr sbrk0(void) __asm__ (GOSYM_PREFIX "runtime.sbrk0");
uintptr sbrk0() { return syscall(SYS_brk, (uintptr)(0)); }
#endif /* __linux__ */
|