Viewing file: lib2funcs.c (7.1 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* Copyright (C) 2014-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see <http://www.gnu.org/licenses/>. */
#include "tconfig.h" #include "tsystem.h" #include "coretypes.h" #include "tm.h" #include "libgcc_tm.h"
#ifdef HAVE_GAS_HIDDEN #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden"))) #else #define ATTRIBUTE_HIDDEN #endif
/* Work out the largest "word" size that we can deal with on this target. */ #if MIN_UNITS_PER_WORD > 4 # define LIBGCC2_MAX_UNITS_PER_WORD 8 #elif (MIN_UNITS_PER_WORD > 2 \ || (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4)) # define LIBGCC2_MAX_UNITS_PER_WORD 4 #else # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD #endif
/* Work out what word size we are using for this compilation. The value can be set on the command line. */ #ifndef LIBGCC2_UNITS_PER_WORD #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD #endif
#if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
#include "libgcc2.h"
/* umul_ppmm(high_prod, low_prod, multiplier, multiplicand) multiplies two UWtype integers MULTIPLIER and MULTIPLICAND, and generates a two UWtype word product in HIGH_PROD and LOW_PROD. */
#undef umul_ppmm #define umul_ppmm(wh, wl, u, v) \ do { \ /* Generate multu instruction. */ \ UDWtype __t = (UDWtype)(u) * (UDWtype)(v); \ (wl) = (UWtype)__t; \ (wh) = (UWtype)(__t >> W_TYPE_SIZE); \ } while (0)
/* sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend, high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers, composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and LOW_SUBTRAHEND_2 respectively. The result is placed in HIGH_DIFFERENCE and LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere, and is lost. */
#undef sub_ddmmss #define sub_ddmmss(sh, sl, ah, al, bh, bl) \ __asm__ ("sub.l %0,%2,%4\n\t" \ "subc.l %1,%3,%5" \ : "=&r" (sl), "=r" (sh) \ : "r" (al), "r" (ah), "r" (bl), "r" (bh))
/* udiv_qqrnnd(high_quotient, low_quotient, remainder, high_numerator, low_numerator, denominator) divides a UDWtype, composed by the UWtype HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient in QUOTIENT and the remainder in REMAINDER. */
#define udiv_qqrnnd(qh, ql, r, nh, nl, d) \ __asm__ ("writemd %3,%4\n\t" \ "divdu %5\n\t" \ "readmda %0\n\t" \ "readmdb %1\n\t" \ "readmdc %2" \ : "=r" (ql), "=r" (qh), "=r" (r) \ : "r" (nl), "r" (nh), "r" (d) \ : "mdb", "mdc")
#if (defined (L_udivdi3) || defined (L_divdi3) || \ defined (L_umoddi3) || defined (L_moddi3)) #define L_udivmoddi4 #endif
#ifdef L_udivmoddi4
#if (defined (L_udivdi3) || defined (L_divdi3) || \ defined (L_umoddi3) || defined (L_moddi3)) static inline __attribute__ ((__always_inline__)) #endif UDWtype __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp) { const DWunion nn = {.ll = n}; const DWunion dd = {.ll = d}; DWunion rr; UWtype d0, d1, n0, n1, n2; UWtype q0, q1; UWtype b, bm;
d0 = dd.s.low; d1 = dd.s.high; n0 = nn.s.low; n1 = nn.s.high;
if (d1 == 0) { /* qq = NN / 0d */
if (d0 == 0) d0 = 1 / d0; /* Divide intentionally by zero. */
udiv_qqrnnd (q1, q0, n0, n1, n0, d0);
/* Remainder in n0. */
if (rp != 0) { rr.s.low = n0; rr.s.high = 0; *rp = rr.ll; } }
else { if (d1 > n1) { /* 00 = nn / DD */
q0 = 0; q1 = 0;
/* Remainder in n1n0. */ if (rp != 0) { rr.s.low = n0; rr.s.high = n1; *rp = rr.ll; } } else { /* 0q = NN / dd */
count_leading_zeros (bm, d1); if (bm == 0) { /* From (n1 >= d1) /\ (the most significant bit of d1 is set), conclude (the most significant bit of n1 is set) /\ (the quotient digit q0 = 0 or 1).
This special case is necessary, not an optimization. */
/* The condition on the next line takes advantage of that n1 >= d1 (true due to program flow). */ if (n1 > d1 || n0 >= d0) { q0 = 1; sub_ddmmss (n1, n0, n1, n0, d1, d0); } else q0 = 0;
q1 = 0;
if (rp != 0) { rr.s.low = n0; rr.s.high = n1; *rp = rr.ll; } } else { UWtype m1, m0; /* Normalize. */
b = W_TYPE_SIZE - bm;
d1 = (d1 << bm) | (d0 >> b); d0 = d0 << bm; n2 = n1 >> b; n1 = (n1 << bm) | (n0 >> b); n0 = n0 << bm;
udiv_qqrnnd (q1, q0, n1, n2, n1, d1); umul_ppmm (m1, m0, q0, d0);
if (m1 > n1 || (m1 == n1 && m0 > n0)) { q0--; sub_ddmmss (m1, m0, m1, m0, d1, d0); }
/* Remainder in (n1n0 - m1m0) >> bm. */ if (rp != 0) { sub_ddmmss (n1, n0, n1, n0, m1, m0); rr.s.low = (n1 << b) | (n0 >> bm); rr.s.high = n1 >> bm; *rp = rr.ll; } } } }
const DWunion ww = {{.low = q0, .high = q1}}; return ww.ll; } #endif
#ifdef L_divdi3 DWtype __divdi3 (DWtype u, DWtype v) { Wtype c = 0; DWunion uu = {.ll = u}; DWunion vv = {.ll = v}; DWtype w;
if (uu.s.high < 0) c = ~c, uu.ll = -uu.ll; if (vv.s.high < 0) c = ~c, vv.ll = -vv.ll;
w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0); if (c) w = -w;
return w; } #endif
#ifdef L_moddi3 DWtype __moddi3 (DWtype u, DWtype v) { Wtype c = 0; DWunion uu = {.ll = u}; DWunion vv = {.ll = v}; DWtype w;
if (uu.s.high < 0) c = ~c, uu.ll = -uu.ll; if (vv.s.high < 0) vv.ll = -vv.ll;
(void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w); if (c) w = -w;
return w; } #endif
#ifdef L_umoddi3 UDWtype __umoddi3 (UDWtype u, UDWtype v) { UDWtype w;
(void) __udivmoddi4 (u, v, &w);
return w; } #endif
#ifdef L_udivdi3 UDWtype __udivdi3 (UDWtype n, UDWtype d) { return __udivmoddi4 (n, d, (UDWtype *) 0); } #endif
#ifdef L_set_trampoline_parity #undef int extern void __set_trampoline_parity (UWtype *);
static inline UWtype parity_bit (UWtype x) { x ^= x << 16; x ^= x << 8; x ^= x << 4; x ^= x << 2; x ^= x << 1; return x & ((UWtype) 1 << (W_TYPE_SIZE - 1)); }
void __set_trampoline_parity (UWtype *addr) { int i;
for (i = 0; i < (__LIBGCC_TRAMPOLINE_SIZE__ * __CHAR_BIT__) / W_TYPE_SIZE; i++) addr[i] |= parity_bit (addr[i]); } #endif
#endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */
|