Viewing file: isl_bernstein.c (15.95 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * Copyright 2006-2007 Universiteit Leiden * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science, * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A, * B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France */
#include <isl_ctx_private.h> #include <isl_map_private.h> #include <isl/set.h> #include <isl_seq.h> #include <isl_morph.h> #include <isl_factorization.h> #include <isl_vertices_private.h> #include <isl_polynomial_private.h> #include <isl_options_private.h> #include <isl_vec_private.h> #include <isl_bernstein.h>
struct bernstein_data { enum isl_fold type; isl_qpolynomial *poly; int check_tight;
isl_cell *cell;
isl_qpolynomial_fold *fold; isl_qpolynomial_fold *fold_tight; isl_pw_qpolynomial_fold *pwf; isl_pw_qpolynomial_fold *pwf_tight; };
static isl_bool vertex_is_integral(__isl_keep isl_basic_set *vertex) { isl_size nvar; isl_size nparam; int i;
nvar = isl_basic_set_dim(vertex, isl_dim_set); nparam = isl_basic_set_dim(vertex, isl_dim_param); if (nvar < 0 || nparam < 0) return isl_bool_error; for (i = 0; i < nvar; ++i) { int r = nvar - 1 - i; if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) && !isl_int_is_negone(vertex->eq[r][1 + nparam + i])) return isl_bool_false; }
return isl_bool_true; }
static __isl_give isl_qpolynomial *vertex_coordinate( __isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *space) { isl_size nvar; isl_size nparam; isl_size total; int r; isl_int denom; isl_qpolynomial *v;
isl_int_init(denom);
nvar = isl_basic_set_dim(vertex, isl_dim_set); nparam = isl_basic_set_dim(vertex, isl_dim_param); total = isl_basic_set_dim(vertex, isl_dim_all); if (nvar < 0 || nparam < 0 || total < 0) goto error; r = nvar - 1 - i;
isl_int_set(denom, vertex->eq[r][1 + nparam + i]); isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
if (isl_int_is_pos(denom)) isl_seq_neg(vertex->eq[r], vertex->eq[r], 1 + total); else isl_int_neg(denom, denom);
v = isl_qpolynomial_from_affine(space, vertex->eq[r], denom); isl_int_clear(denom);
return v; error: isl_space_free(space); isl_int_clear(denom); return NULL; }
/* Check whether the bound associated to the selection "k" is tight, * which is the case if we select exactly one vertex (i.e., one of the * exponents in "k" is exactly "d") and if that vertex * is integral for all values of the parameters. * * If the degree "d" is zero, then there are no exponents. * Since the polynomial is a constant expression in this case, * the bound is necessarily tight. */ static isl_bool is_tight(int *k, int n, int d, isl_cell *cell) { int i;
if (d == 0) return isl_bool_true;
for (i = 0; i < n; ++i) { int v; if (!k[i]) continue; if (k[i] != d) return isl_bool_false; v = cell->ids[n - 1 - i]; return vertex_is_integral(cell->vertices->v[v].vertex); }
return isl_bool_false; }
static isl_stat add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom, int *k, int n, int d, struct bernstein_data *data) { isl_qpolynomial_fold *fold; isl_bool tight;
fold = isl_qpolynomial_fold_alloc(data->type, b);
tight = isl_bool_false; if (data->check_tight) tight = is_tight(k, n, d, data->cell); if (tight < 0) return isl_stat_error; if (tight) data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom, data->fold_tight, fold); else data->fold = isl_qpolynomial_fold_fold_on_domain(dom, data->fold, fold); return isl_stat_ok; }
/* Extract the coefficients of the Bernstein base polynomials and store * them in data->fold and data->fold_tight. * * In particular, the coefficient of each monomial * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]! * * c[i] contains the coefficient of the selected powers of the first i+1 vars. * multinom[i] contains the partial multinomial coefficient. */ static isl_stat extract_coefficients(isl_qpolynomial *poly, __isl_keep isl_set *dom, struct bernstein_data *data) { int i; int d; isl_size n; isl_ctx *ctx; isl_qpolynomial **c = NULL; int *k = NULL; int *left = NULL; isl_vec *multinom = NULL;
n = isl_qpolynomial_dim(poly, isl_dim_in); if (n < 0) return isl_stat_error;
ctx = isl_qpolynomial_get_ctx(poly); d = isl_qpolynomial_degree(poly); isl_assert(ctx, n >= 2, return isl_stat_error);
c = isl_calloc_array(ctx, isl_qpolynomial *, n); k = isl_alloc_array(ctx, int, n); left = isl_alloc_array(ctx, int, n); multinom = isl_vec_alloc(ctx, n); if (!c || !k || !left || !multinom) goto error;
isl_int_set_si(multinom->el[0], 1); for (k[0] = d; k[0] >= 0; --k[0]) { int i = 1; isl_qpolynomial_free(c[0]); c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]); left[0] = d - k[0]; k[1] = -1; isl_int_set(multinom->el[1], multinom->el[0]); while (i > 0) { if (i == n - 1) { int j; isl_space *space; isl_qpolynomial *b; isl_qpolynomial *f; for (j = 2; j <= left[i - 1]; ++j) isl_int_divexact_ui(multinom->el[i], multinom->el[i], j); b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in, n - 1 - i, left[i - 1]); b = isl_qpolynomial_project_domain_on_params(b); space = isl_qpolynomial_get_domain_space(b); f = isl_qpolynomial_rat_cst_on_domain(space, ctx->one, multinom->el[i]); b = isl_qpolynomial_mul(b, f); k[n - 1] = left[n - 2]; if (add_fold(b, dom, k, n, d, data) < 0) goto error; --i; continue; } if (k[i] >= left[i - 1]) { --i; continue; } ++k[i]; if (k[i]) isl_int_divexact_ui(multinom->el[i], multinom->el[i], k[i]); isl_qpolynomial_free(c[i]); c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in, n - 1 - i, k[i]); left[i] = left[i - 1] - k[i]; k[i + 1] = -1; isl_int_set(multinom->el[i + 1], multinom->el[i]); ++i; } isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]); }
for (i = 0; i < n; ++i) isl_qpolynomial_free(c[i]);
isl_vec_free(multinom); free(left); free(k); free(c); return isl_stat_ok; error: isl_vec_free(multinom); free(left); free(k); if (c) for (i = 0; i < n; ++i) isl_qpolynomial_free(c[i]); free(c); return isl_stat_error; }
/* Perform bernstein expansion on the parametric vertices that are active * on "cell". * * data->poly has been homogenized in the calling function. * * We plug in the barycentric coordinates for the set variables * * \vec x = \sum_i \alpha_i v_i(\vec p) * * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension. * Next, we extract the coefficients of the Bernstein base polynomials. */ static isl_stat bernstein_coefficients_cell(__isl_take isl_cell *cell, void *user) { int i, j; struct bernstein_data *data = (struct bernstein_data *)user; isl_space *space_param; isl_space *space_dst; isl_qpolynomial *poly = data->poly; isl_size n_in; unsigned nvar; int n_vertices; isl_qpolynomial **subs; isl_pw_qpolynomial_fold *pwf; isl_set *dom; isl_ctx *ctx;
n_in = isl_qpolynomial_dim(poly, isl_dim_in); if (n_in < 0) goto error;
nvar = n_in - 1; n_vertices = cell->n_vertices;
ctx = isl_qpolynomial_get_ctx(poly); if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate) return isl_cell_foreach_simplex(cell, &bernstein_coefficients_cell, user);
subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar); if (!subs) goto error;
space_param = isl_basic_set_get_space(cell->dom); space_dst = isl_qpolynomial_get_domain_space(poly); space_dst = isl_space_add_dims(space_dst, isl_dim_set, n_vertices);
for (i = 0; i < 1 + nvar; ++i) subs[i] = isl_qpolynomial_zero_on_domain(isl_space_copy(space_dst));
for (i = 0; i < n_vertices; ++i) { isl_qpolynomial *c; c = isl_qpolynomial_var_on_domain(isl_space_copy(space_dst), isl_dim_set, 1 + nvar + i); for (j = 0; j < nvar; ++j) { int k = cell->ids[i]; isl_qpolynomial *v; v = vertex_coordinate(cell->vertices->v[k].vertex, j, isl_space_copy(space_param)); v = isl_qpolynomial_add_dims(v, isl_dim_in, 1 + nvar + n_vertices); v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c)); subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v); } subs[0] = isl_qpolynomial_add(subs[0], c); } isl_space_free(space_dst);
poly = isl_qpolynomial_copy(poly);
poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices); poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs); poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar);
data->cell = cell; dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom)); data->fold = isl_qpolynomial_fold_empty(data->type, isl_space_copy(space_param)); data->fold_tight = isl_qpolynomial_fold_empty(data->type, space_param); if (extract_coefficients(poly, dom, data) < 0) { data->fold = isl_qpolynomial_fold_free(data->fold); data->fold_tight = isl_qpolynomial_fold_free(data->fold_tight); }
pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom), data->fold); data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf); pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight); data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
isl_qpolynomial_free(poly); isl_cell_free(cell); for (i = 0; i < 1 + nvar; ++i) isl_qpolynomial_free(subs[i]); free(subs); return isl_stat_ok; error: isl_cell_free(cell); return isl_stat_error; }
/* Base case of applying bernstein expansion. * * We compute the chamber decomposition of the parametric polytope "bset" * and then perform bernstein expansion on the parametric vertices * that are active on each chamber. * * If the polynomial does not depend on the set variables * (and in particular if the number of set variables is zero) * then the bound is equal to the polynomial and * no actual bernstein expansion needs to be performed. */ static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base( __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct bernstein_data *data, isl_bool *tight) { int degree; isl_size nvar; isl_space *space; isl_vertices *vertices; isl_bool covers;
nvar = isl_basic_set_dim(bset, isl_dim_set); if (nvar < 0) bset = isl_basic_set_free(bset); if (nvar == 0) return isl_qpolynomial_cst_bound(bset, poly, data->type, tight);
degree = isl_qpolynomial_degree(poly); if (degree < -1) bset = isl_basic_set_free(bset); if (degree <= 0) return isl_qpolynomial_cst_bound(bset, poly, data->type, tight);
space = isl_basic_set_get_space(bset); space = isl_space_params(space); space = isl_space_from_domain(space); space = isl_space_add_dims(space, isl_dim_set, 1); data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space), data->type); data->pwf_tight = isl_pw_qpolynomial_fold_zero(space, data->type); data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly)); vertices = isl_basic_set_compute_vertices(bset); if (isl_vertices_foreach_disjoint_cell(vertices, &bernstein_coefficients_cell, data) < 0) data->pwf = isl_pw_qpolynomial_fold_free(data->pwf); isl_vertices_free(vertices); isl_qpolynomial_free(data->poly);
isl_basic_set_free(bset); isl_qpolynomial_free(poly);
covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf); if (covers < 0) goto error;
if (tight) *tight = covers;
if (covers) { isl_pw_qpolynomial_fold_free(data->pwf); return data->pwf_tight; }
data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
return data->pwf; error: isl_pw_qpolynomial_fold_free(data->pwf_tight); isl_pw_qpolynomial_fold_free(data->pwf); return NULL; }
/* Apply bernstein expansion recursively by working in on len[i] * set variables at a time, with i ranging from n_group - 1 to 0. */ static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive( __isl_take isl_pw_qpolynomial *pwqp, int n_group, int *len, struct bernstein_data *data, isl_bool *tight) { int i; isl_size nparam; isl_size nvar; isl_pw_qpolynomial_fold *pwf;
nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param); nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in); if (nparam < 0 || nvar < 0) goto error;
pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam, isl_dim_in, 0, nvar - len[n_group - 1]); pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
for (i = n_group - 2; i >= 0; --i) { nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param); if (nparam < 0) return isl_pw_qpolynomial_fold_free(pwf); pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0, isl_dim_param, nparam - len[i], len[i]); if (tight && !*tight) tight = NULL; pwf = isl_pw_qpolynomial_fold_bound(pwf, tight); }
return pwf; error: isl_pw_qpolynomial_free(pwqp); return NULL; }
static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors( __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct bernstein_data *data, isl_bool *tight) { isl_factorizer *f; isl_set *set; isl_pw_qpolynomial *pwqp; isl_pw_qpolynomial_fold *pwf;
f = isl_basic_set_factorizer(bset); if (!f) goto error; if (f->n_group == 0) { isl_factorizer_free(f); return bernstein_coefficients_base(bset, poly, data, tight); }
set = isl_set_from_basic_set(bset); pwqp = isl_pw_qpolynomial_alloc(set, poly); pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph));
pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data, tight);
isl_factorizer_free(f);
return pwf; error: isl_basic_set_free(bset); isl_qpolynomial_free(poly); return NULL; }
static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive( __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct bernstein_data *data, isl_bool *tight) { int i; int *len; isl_size nvar; isl_pw_qpolynomial_fold *pwf; isl_set *set; isl_pw_qpolynomial *pwqp;
nvar = isl_basic_set_dim(bset, isl_dim_set); if (nvar < 0 || !poly) goto error; len = isl_alloc_array(bset->ctx, int, nvar); if (nvar && !len) goto error;
for (i = 0; i < nvar; ++i) len[i] = 1;
set = isl_set_from_basic_set(bset); pwqp = isl_pw_qpolynomial_alloc(set, poly);
pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
free(len);
return pwf; error: isl_basic_set_free(bset); isl_qpolynomial_free(poly); return NULL; }
/* Compute a bound on the polynomial defined over the parametric polytope * using bernstein expansion and store the result * in bound->pwf and bound->pwf_tight. * * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if * the polytope can be factorized and apply bernstein expansion recursively * on the factors. * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply * bernstein expansion recursively on each dimension. * Otherwise, we apply bernstein expansion on the entire polytope. */ isl_stat isl_qpolynomial_bound_on_domain_bernstein( __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct isl_bound *bound) { struct bernstein_data data; isl_pw_qpolynomial_fold *pwf; isl_size nvar; isl_bool tight = isl_bool_false; isl_bool *tp = bound->check_tight ? &tight : NULL;
nvar = isl_basic_set_dim(bset, isl_dim_set); if (nvar < 0 || !poly) goto error;
data.type = bound->type; data.check_tight = bound->check_tight;
if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS) pwf = bernstein_coefficients_factors(bset, poly, &data, tp); else if (nvar > 1 && (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS)) pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp); else pwf = bernstein_coefficients_base(bset, poly, &data, tp);
if (tight) return isl_bound_add_tight(bound, pwf); else return isl_bound_add(bound, pwf); error: isl_basic_set_free(bset); isl_qpolynomial_free(poly); return isl_stat_error; }
|