Viewing file: t-perfsqr.c (3.8 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* Test mpz_perfect_square_p.
Copyright 2000-2002 Free Software Foundation, Inc.
This file is part of the GNU MP Library test suite.
The GNU MP Library test suite is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
The GNU MP Library test suite is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with the GNU MP Library test suite. If not, see https://www.gnu.org/licenses/. */
#include <stdio.h> #include <stdlib.h>
#include "gmp-impl.h" #include "tests.h"
#include "mpn/perfsqr.h"
/* check_modulo() exercises mpz_perfect_square_p on squares which cover each possible quadratic residue to each divisor used within mpn_perfect_square_p, ensuring those residues aren't incorrectly claimed to be non-residues.
Each divisor is taken separately. It's arranged that n is congruent to 0 modulo the other divisors, 0 of course being a quadratic residue to any modulus.
The values "(j*others)^2" cover all quadratic residues mod divisor[i], but in no particular order. j is run from 1<=j<=divisor[i] so that zero is excluded. A literal n==0 doesn't reach the residue tests. */
void check_modulo (void) { static const unsigned long divisor[] = PERFSQR_DIVISORS; unsigned long i, j;
mpz_t alldiv, others, n;
mpz_init (alldiv); mpz_init (others); mpz_init (n);
/* product of all divisors */ mpz_set_ui (alldiv, 1L); for (i = 0; i < numberof (divisor); i++) mpz_mul_ui (alldiv, alldiv, divisor[i]);
for (i = 0; i < numberof (divisor); i++) { /* product of all divisors except i */ mpz_set_ui (others, 1L); for (j = 0; j < numberof (divisor); j++) if (i != j) mpz_mul_ui (others, others, divisor[j]);
for (j = 1; j <= divisor[i]; j++) { /* square */ mpz_mul_ui (n, others, j); mpz_mul (n, n, n); if (! mpz_perfect_square_p (n)) { printf ("mpz_perfect_square_p got 0, want 1\n"); mpz_trace (" n", n); abort (); } } }
mpz_clear (alldiv); mpz_clear (others); mpz_clear (n); }
/* Exercise mpz_perfect_square_p compared to what mpz_sqrt says. */ void check_sqrt (int reps) { mpz_t x2, x2t, x; mp_size_t x2n; int res; int i; /* int cnt = 0; */ gmp_randstate_ptr rands = RANDS; mpz_t bs;
mpz_init (bs);
mpz_init (x2); mpz_init (x); mpz_init (x2t);
for (i = 0; i < reps; i++) { mpz_urandomb (bs, rands, 9); x2n = mpz_get_ui (bs); mpz_rrandomb (x2, rands, x2n); /* mpz_out_str (stdout, -16, x2); puts (""); */
res = mpz_perfect_square_p (x2); mpz_sqrt (x, x2); mpz_mul (x2t, x, x);
if (res != (mpz_cmp (x2, x2t) == 0)) { printf ("mpz_perfect_square_p and mpz_sqrt differ\n"); mpz_trace (" x ", x); mpz_trace (" x2 ", x2); mpz_trace (" x2t", x2t); printf (" mpz_perfect_square_p %d\n", res); printf (" mpz_sqrt %d\n", mpz_cmp (x2, x2t) == 0); abort (); }
/* cnt += res != 0; */ } /* printf ("%d/%d perfect squares\n", cnt, reps); */
mpz_clear (bs); mpz_clear (x2); mpz_clear (x); mpz_clear (x2t); }
int main (int argc, char **argv) { int reps = 200000;
tests_start (); mp_trace_base = -16;
if (argc == 2) reps = atoi (argv[1]);
check_modulo (); check_sqrt (reps);
tests_end (); exit (0); }
|