Viewing file: accesses.h (38.94 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
// Access-related classes for RTL SSA -*- C++ -*- // Copyright (C) 2020-2022 Free Software Foundation, Inc. // // This file is part of GCC. // // GCC is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 3, or (at your option) any later // version. // // GCC is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with GCC; see the file COPYING3. If not see // <http://www.gnu.org/licenses/>.
namespace rtl_ssa {
// Forward declarations. class bb_info; class clobber_group; class def_node; class ebb_info; class insn_info; class phi_info; class set_info;
// Used as a boolean argunent to certain routines. enum class ignore_clobbers { NO, YES };
// Represents something that the SSA form tracks: either a register // or memory. class resource_info { public: // Return true if this resource represents memory. bool is_mem () const { return regno == MEM_REGNO; }
// Return true if this resource represents a register. bool is_reg () const { return regno != MEM_REGNO; }
// Print the name of the resource to PP. void print_identifier (pretty_printer *pp) const;
// Possibly print additional information about the resource to PP. void print_context (pretty_printer *pp) const;
// A combination of print_identifier and print_context. void print (pretty_printer *pp) const;
// The mode with which the resource is being defined or used. This is // always BLKmode for memory. It can also be BLKmode for registers if // we don't yet know the real mode, or if the mode is not relevant for // some reason. machine_mode mode;
// The pseudo register or single hard register that the resource represents, // or MEM_REGNO for memory. unsigned int regno; };
// For simplicity, we treat memory as a single unified entity. const resource_info memory = { E_BLKmode, MEM_REGNO };
// Flags used when printing access_infos. // // Print the location at which the access occurs. This is redundant // when the access is being printed as part of the instruction or phi node // that contains the access. const unsigned int PP_ACCESS_INCLUDE_LOCATION = 1U << 0; // // Print links to other accesses: the definition that defines a use, // the uses of a definition, and the inputs of a phi node. const unsigned int PP_ACCESS_INCLUDE_LINKS = 1U << 1; // // Print additional properties about the access. const unsigned int PP_ACCESS_INCLUDE_PROPERTIES = 1U << 2; // // The usual flags when printing an access in isolation. const unsigned int PP_ACCESS_DEFAULT = (PP_ACCESS_INCLUDE_LOCATION | PP_ACCESS_INCLUDE_LINKS | PP_ACCESS_INCLUDE_PROPERTIES); // // The usual flags when printing a def_info from its defining instruction. const unsigned int PP_ACCESS_SETTER = (PP_ACCESS_INCLUDE_LINKS | PP_ACCESS_INCLUDE_PROPERTIES); // // The usual flags when printing a use_info from its user. const unsigned int PP_ACCESS_USER = PP_ACCESS_INCLUDE_PROPERTIES;
// The various ways of accessing a resource. The two range checks that // we need to perform are [SET, PHI] (for set_info) and [SET, CLOBBER] // (for def_info), so the ordering tries to make those tests as // efficient as possible. enum class access_kind : uint8_t { // Set the resource to a useful value. SET,
// A form of SET that collects the possible incoming values of the // resource using a phi node; the resource does not actually change value. PHI,
// Set the resource to a value that is both unknown and not useful. CLOBBER,
// Use the current value of the resource. USE };
// A base class that represents an access to a resource. class access_info { // Size: 1 LP64 word friend class function_info;
public: // Return the resource that is being accessed. resource_info resource () const { return { m_mode, m_regno }; }
// Return true if the access is to memory. bool is_mem () const { return m_regno == MEM_REGNO; }
// Return true if the access is to a register. bool is_reg () const { return m_regno != MEM_REGNO; }
// If the access is to a register, return the register number, // otherwise return MEM_REGNO. unsigned int regno () const { return m_regno; }
// For sets, return the mode of the value to which the resource is being set. // For uses, return the mode in which the resource is being used (which for // hard registers might be different from the mode in which the resource // was set). // // When accessing memory, the mode is always BLKmode. When accessing // pseudo registers, the mode is always the mode of the pseudo register // (and so doesn't, for example, take subregs into account). machine_mode mode () const { return m_mode; }
// Return the kind of access that this is. access_kind kind () const { return m_kind; }
// Return true if the access occurs in a phi node or an "artificial" // instruction (see insn_info), false if it occurs in a real instruction. bool is_artificial () const { return m_is_artificial; }
// Return the opposite of is_artificial. bool is_real () const { return !m_is_artificial; }
// Return true if this access is a set_info whose result is used by at least // one nondebug instruction. bool is_set_with_nondebug_insn_uses () const;
// Return true if the access describes a set_info and if the value // is defined by an RTX_AUTOINC rtx. bool is_pre_post_modify () const { return m_is_pre_post_modify; }
// Return true if the access is a clobber_info that describes the effect // of a called function. This kind of clobber is added for -fipa-ra // functions that clobber only a strict subset of the normal ABI set. bool is_call_clobber () const { return m_is_call_clobber; }
// Return true if the access is a use_info that simply marks a point in // the live range of a set_info at which the value is live out from // the containing EBB. bool is_live_out_use () const { return m_is_live_out_use; }
// Return true if the access is a use_info for an instruction and if // at least some of the uses occur within a MEM address. // // There shouldn't be a need to check whether *all* uses occur within // a MEM address, since in principle: // // A: (set (reg:SI R1) (mem:SI (post_inc:SI (reg:SI R2)))) // // should be semantically equivalent to: // // B: (parallel [(set (reg:SI R1) (mem:SI (reg:SI R2))) // (set (reg:SI R2) (plus:SI (reg:SI R2) (const_int 4)))]) // // even though R2 occurs only in MEMs for A but occurs outside MEMs for B. bool includes_address_uses () const { return m_includes_address_uses; }
// Return true if the access occurs in an instruction and if at least // some accesses to resource () occur in a read-modify-write context. // This is equivalent to the DF_REF_READ_WRITE flag. bool includes_read_writes () const { return m_includes_read_writes; }
// Return true if the access occurs in an instruction and if at least // some accesses to resource () occur in a subreg context. bool includes_subregs () const { return m_includes_subregs; }
// Return true if the access occurs in an instruction and if at least // some accesses to resource () occur in a multi-register REG. // This implies that resource () is a hard register. bool includes_multiregs () const { return m_includes_multiregs; }
// Return true if the access occurs in a real nondebug instruction // and if all accesses to resource () occur in notes, rather than // in the main instruction pattern. bool only_occurs_in_notes () const { return m_only_occurs_in_notes; }
protected: access_info (resource_info, access_kind);
void print_prefix_flags (pretty_printer *) const; void print_properties_on_new_lines (pretty_printer *) const;
private: void set_mode (machine_mode mode) { m_mode = mode; }
// The values returned by the accessors above. unsigned int m_regno; access_kind m_kind : 8;
protected: // The value returned by the accessors above. unsigned int m_is_artificial : 1; unsigned int m_is_set_with_nondebug_insn_uses : 1; unsigned int m_is_pre_post_modify : 1; unsigned int m_is_call_clobber : 1; unsigned int m_is_live_out_use : 1; unsigned int m_includes_address_uses : 1; unsigned int m_includes_read_writes : 1; unsigned int m_includes_subregs : 1; unsigned int m_includes_multiregs : 1; unsigned int m_only_occurs_in_notes : 1;
// True if this access is a use_insn that occurs in a nondebug instruction, // and if there are no following uses by nondebug instructions. The next use // is null, a use_info for a debug instruction, or a use_info for a phi node. // // Providing this helps to optimize use_info::next_nondebug_insn_use. unsigned int m_is_last_nondebug_insn_use : 1;
// True if this access is a use_info for a debug instruction or // a phi node. unsigned int m_is_in_debug_insn_or_phi : 1;
private: // Used as a flag during various update routines; has no long-lasting // meaning. unsigned int m_has_been_superceded : 1;
// Indicates that this access has been allocated on the function_info's // temporary obstack and so is not (yet) part of the proper SSA form. unsigned int m_is_temp : 1;
// Bits for future expansion. unsigned int m_spare : 2;
// The value returned by the accessor above. machine_mode m_mode : 8; };
// A contiguous array of access_info pointers. Used to represent a // (mostly small) number of definitions and/or uses. using access_array = array_slice<access_info *const>;
// A class for building an access_array on an obstack. It automatically // frees any in-progress array if the build attempt fails before finish () // has been called. class access_array_builder : public obstack_watermark { public: using obstack_watermark::obstack_watermark;
// Make sure that the array has enough for NUM_ACCESSES accesses. void reserve (unsigned int num_accesses);
// Add ACCESS to the end of the array that we're building, given that // reserve () has already made room. void quick_push (access_info *access);
// Finish and return the new array. The array survives the destruction // of the builder. array_slice<access_info *> finish (); };
// An access_info that represents the use of a resource in either a phi node // or an instruction. It records which set_info (if any) provides the // resource's value. class use_info : public access_info { // Overall size: 5 LP64 words. friend class set_info; friend class function_info;
public: // Return true if the access occurs in an instruction rather than a phi node. // The instruction might be a debug instruction or a nondebug instruction. bool is_in_any_insn () const { return m_insn_or_phi.is_first (); }
// Return true if the access occurs in a nondebug instruction, // false if it occurs in a debug instruction or a phi node. bool is_in_nondebug_insn () const { return !m_is_in_debug_insn_or_phi; }
// Return true if the instruction occurs in a debug instruction. bool is_in_debug_insn () const;
// Return true if the access occurs in a phi node rather than in an // instruction. bool is_in_phi () const { return m_insn_or_phi.is_second (); }
// Return true if the access occurs in a debug instruction or a phi node, // false if it occurs in a nondebug instruction. bool is_in_debug_insn_or_phi () const { return m_is_in_debug_insn_or_phi; }
// Return the instruction that uses the resource. Only valid is // is_in_any_insn (). insn_info *insn () const { return m_insn_or_phi.known_first (); }
// Return the phi node that uses the resource. Only valid if is_in_phi (). phi_info *phi () const { return m_insn_or_phi.known_second (); }
// Return the basic block that contains the access. bb_info *bb () const;
// Return the extended basic block that contains the access. ebb_info *ebb () const;
// Return the set_info whose result the access uses, or null if the // value of the resource is completely undefined. // // The value is undefined if the use is completely upwards exposed // (i.e. has no preceding definition) or if the preceding definition // is a clobber rather than a set. // // The mode of the definition can be different from the mode of the use; // for example, a hard register might be set in DImode and used in SImode. set_info *def () const { return m_def; }
// Return the previous and next uses of the definition. See set_info // for details about the ordering. // // These routines are only meaningful when def () is nonnull. use_info *prev_use () const; use_info *next_use () const;
// Return the next use by a nondebug instruction, or null if none. // // This is only valid if is_in_nondebug_insn (). It is equivalent to, // but more efficient than: // // next_use () && next_use ()->is_in_nondebug_insn () // ? next_use () : nullptr use_info *next_nondebug_insn_use () const;
// Return the next use by an instruction, or null if none. The use might // be by a debug instruction or a nondebug instruction. // // This is only valid if is_in_any_insn (). It is equivalent to: // // next_use () && next_use ()->is_in_any_insn () ? next_use () : nullptr use_info *next_any_insn_use () const;
// Return the previous use by a phi node in the list, or null if none. // // This is only valid if is_in_phi (). It is equivalent to: // // prev_use () && prev_use ()->is_in_phi () ? prev_use () : nullptr use_info *prev_phi_use () const;
// Return true if this is the first use of the definition. See set_info // for details about the ordering. // // This routine is only meaningful when def () is nonnull. bool is_first_use () const;
// Return true if this is the last use of the definition. See set_info // for details about the ordering. // // This routine is only meaningful when def () is nonnull. bool is_last_use () const;
// Print a description of def () to PP. void print_def (pretty_printer *pp) const;
// Print a description of the location of the use to PP. void print_location (pretty_printer *pp) const;
// Print a description of the use to PP under the control of // PP_ACCESS_* flags FLAGS. void print (pretty_printer *pp, unsigned int flags = PP_ACCESS_DEFAULT) const;
private: // If we only create a set_info splay tree for sets that are used by // three instructions or more, then only about 16% of uses need to be in // a splay tree. It is therefore more memory-efficient to use separate // nodes for the splay tree, instead of storing the child nodes // directly in the use_info.
// Make insn_info the first (and thus directly-encoded) choice since // insn () is read much more often than phi (). using insn_or_phi = pointer_mux<insn_info, phi_info>;
// The use belongs to a list that is partitioned into three sections: // // (1) all uses in nondebug instructions, in reverse postorder // // (2) all uses in debug instructions, in reverse postorder // // (3) all phi nodes, in no particular order. // // In order to preserve memory: // // - The set_info just has a pointer to the first use. // // - The first use's "prev" pointer points to the last use. // // - The last use's "next" pointer points to the last use in a nondebug // instruction, or null if there are no such uses. using last_use_or_prev_use = pointer_mux<use_info>; using last_nondebug_insn_use_or_next_use = pointer_mux<use_info>;
use_info (insn_or_phi, resource_info, set_info *);
use_info *last_use () const; use_info *last_nondebug_insn_use () const; bool calculate_is_last_nondebug_insn_use () const;
void record_reference (rtx_obj_reference, bool); void set_insn (insn_info *); void set_def (set_info *set) { m_def = set; } void set_is_live_out_use (bool value) { m_is_live_out_use = value; } void copy_prev_from (use_info *); void copy_next_from (use_info *); void set_last_use (use_info *); void set_prev_use (use_info *); void set_last_nondebug_insn_use (use_info *); void set_next_use (use_info *); void clear_use_links (); bool has_use_links (); bool check_integrity ();
// The location of the use. insn_or_phi m_insn_or_phi;
// The overloaded "prev" and "next" pointers, as described above. last_use_or_prev_use m_last_use_or_prev_use; last_nondebug_insn_use_or_next_use m_last_nondebug_insn_use_or_next_use;
// The value of def (). set_info *m_def; };
// Iterators for lists of uses. using use_iterator = list_iterator<use_info, &use_info::next_use>; using reverse_use_iterator = list_iterator<use_info, &use_info::prev_use>;
// Like use_iterator, but specifically for uses by nondebug instructions, // uses by any kind of instruction, and uses by phi nodes respectively. // These iterators allow a nullptr end point even if there are other types // of use in the same definition. using nondebug_insn_use_iterator = list_iterator<use_info, &use_info::next_nondebug_insn_use>; using any_insn_use_iterator = list_iterator<use_info, &use_info::next_any_insn_use>; using phi_use_iterator = list_iterator<use_info, &use_info::prev_phi_use>;
// A view of an access_array in which every entry is known to be a use_info. using use_array = const_derived_container<use_info *, access_array>;
// An access_info that describes a definition of a resource. The definition // can be a set or a clobber; the difference is that a set provides a known // and potentially useful value, while a clobber provides an unknown and // unusable value. // // Every definition is associated with an insn_info. All definitions of // a given resource are stored in a linked list, maintained in reverse // postorder. class def_info : public access_info { // Overall size: 4 LP64 words friend class function_info; friend class clobber_group;
public: // Return the instruction that contains the definition. insn_info *insn () const { return m_insn; }
// Return the basic block that contains the definition. bb_info *bb () const;
// Return the extended basic block that contains the access. ebb_info *ebb () const;
// Return the previous and next definitions of the same resource, // in reverse postorder, or null if no such definition exists. def_info *prev_def () const; def_info *next_def () const;
// Return true if this is the first definition in the list. bool is_first_def () const;
// Return true if this is the last definition in the list. bool is_last_def () const;
// Print the location of the definition to PP. void print_location (pretty_printer *pp) const;
// Print a unique identifier for this definition to PP. The identifier has // the form <resource>:<insn uid>. void print_identifier (pretty_printer *pp) const;
protected: def_info (insn_info *insn, resource_info resource, access_kind kind);
private: // In order to preserve memory, the list head only points to the first // definition in the list. The "prev" entry of the first definition // then points to the last definition. using last_def_or_prev_def = pointer_mux<def_info>;
// For similar memory-saving reasons, if we want to create a splay tree // of accesses to a resource, we hang the root off the "next" entry of // the last definition in the list. using splay_root_or_next_def = pointer_mux<def_node, def_info>;
void set_insn (insn_info *insn) { m_insn = insn; }
def_info *last_def () const; def_node *splay_root () const;
void record_reference (rtx_obj_reference, bool); void copy_prev_from (def_info *); void copy_next_from (def_info *); void set_last_def (def_info *); void set_prev_def (def_info *); void set_splay_root (def_node *); void set_next_def (def_info *); void clear_def_links (); bool has_def_links ();
// The location of the definition. insn_info *m_insn;
// The overloaded "prev" and "next" pointers, as described above. last_def_or_prev_def m_last_def_or_prev_def; splay_root_or_next_def m_splay_root_or_next_def; };
// Iterators for lists of definitions. using def_iterator = list_iterator<def_info, &def_info::next_def>; using reverse_def_iterator = list_iterator<def_info, &def_info::prev_def>;
// A view of an access_array in which every entry is known to be a // def_info. using def_array = const_derived_container<def_info *, access_array>;
// A def_info that sets the resource to a value that is both // unknown and not useful. This is only ever used for registers, // since memory always has some useful contents. // // Neighboring clobbers are grouped into clobber_groups, so that it's // possibly to skip over all neighboring clobbers in a single step. class clobber_info : public def_info { // Overall size: 8 LP64 words friend class default_splay_tree_accessors<clobber_info *>; friend class default_splay_tree_accessors_with_parent<clobber_info *>; friend class function_info; friend class clobber_group;
public: using splay_tree = default_rootless_splay_tree<clobber_info *>;
// Return true if the clobber belongs to a clobber_group, false if it // is standalone. bool is_in_group () const { return m_group; }
// Return the group that the clobber is in, or null if none. // // Complexity: amortized O(1), worst case O(N), where N is the number // of clobbers in the containing clobber_group. clobber_group *group () const;
// Print a description of the clobber to PP under the control of // PP_ACCESS_* flags FLAGS. void print (pretty_printer *pp, unsigned int flags = PP_ACCESS_DEFAULT) const;
private: // Once normal call clobbers are taken out of the equation by // insn_call_clobbers_notes, clobber_infos account for roughly 6% of all // def_infos, with the rest being set_infos. clobber_infos are // therefore much less size-sensitive than set_infos are. // // As noted above, we want to group neighboring clobbers together so that // we can quickly step over them to find the previous or next "real" set. // We also want to be able to split the group in sublinear time, // for example when inserting a set/use pair between two clobbers // in a group. // // So: // // - Clobbers need to have ready access to their group, so that we // can cheaply skip over the whole group. This means that they // need a group pointer. // // - We need to be able to update the group pointer lazily, so that // the cost of updating it is counted against accesses to the clobbers // that need updating. // // We also want to be able to insert clobbers into a group in // amortized logarithmic time. // // We therefore use a splay tree to represent the clobbers in a group, // with the nodes storing their parent node. It is then possible to // perform splay operations without first getting hold of the root. // The root of the splay tree always has a valid, up-to-date group, // so lazy group updates can get the new group from there. // // Roughly 90% of clobbers have a neighboring definition in the same // block, which means that most need to be stored in a splay tree. // We therefore store the splay tree fields directly in the clobber_info // rather than using a separate node object.
clobber_info (insn_info *, unsigned int);
void set_group (clobber_group *group) { m_group = group; } void update_group (clobber_group *); clobber_group *recompute_group ();
// The child and parent nodes in the splay tree. clobber_info *m_children[2]; clobber_info *m_parent;
// The last known value of group (), which might now be out of date. clobber_group *m_group; };
using clobber_tree = clobber_info::splay_tree::rooted;
// A def_info that sets the resource to a useful value. It records // all uses of the value in a linked list. The list is partitioned // into three sections: // // (1) all uses by nondebug instructions, in reverse postorder, followed by // (2) all uses by debug instructions, in reverse postorder, followed by // (3) all uses by phi nodes, in no particular order. // // There are two cases: // // - If we know in advance that there is a single definition of a resource R // and therefore decide not to use phi nodes for R, (1) and (2) contain // all uses of R, regardless of which blocks contain the uses. (3) is // then empty. // // - Otherwise, (1) only contains uses in the same extended basic block // as the definition, and it is terminated by a use that marks the end // of the live range for the EBB. In other words, if the resource dies // in the EBB, the last use by a nondebug instruction marks the point at // which it dies, otherwise there is a fake live-out use at the end of // the EBB. // // Since debug instructions should not affect codegen, they opportunisticly // attach to the same set_info as nondebug instructions where possible. // If a nondebug instruction would attach to a degenerate phi and if no // such phi exists, debug instructions instead attach to whichever set_info // provides the value, regardless of where that set_info is. class set_info : public def_info { // Overall size: 6 LP64 words. friend class function_info; using use_splay_tree = splay_tree<use_info *>;
public: // Return the first and last uses of the set, or null if the list is empty. // See the comment above for details about the order. use_info *first_use () const { return m_first_use; } use_info *last_use () const;
// Return the first and last uses of the set by nondebug instructions, // or null if there are no such uses. The uses are in reverse postorder. use_info *first_nondebug_insn_use () const; use_info *last_nondebug_insn_use () const;
// Return the first use of the set by any kind of instruction, or null // if there are no such uses. The uses are in the order described above. use_info *first_any_insn_use () const;
// Return the last use of the set by phi inputs, or null if there are no // such uses. The phi input uses are in no particular order. use_info *last_phi_use () const;
// Return true if at least one nondebug instruction or phi node uses // the set's result. This is equivalent to testing whether the set is // ever live. bool has_nondebug_uses () const;
// Return true if anything uses the set's result. Note that this includes // uses by debug instructions, so it should not be used for optimization // decisions. bool has_any_uses () const { return m_first_use; }
// Return true if at least one nondebug instruction uses the set's result. bool has_nondebug_insn_uses () const;
// Return true if at least one phi node uses the set's result. bool has_phi_uses () const;
// If there is exactly one nondebug use of the set's result, return that use, // otherwise return null. The use might be in an instruction or in a phi // node. use_info *single_nondebug_use () const;
// If exactly one nondebug instruction uses the set's result, return the use // by that instruction, otherwise return null. use_info *single_nondebug_insn_use () const;
// If exactly one phi node uses the set's result, return the use by that phi // node, otherwise return null. use_info *single_phi_use () const;
// Return true if the set and its uses are contained within a single // extended basic block, with the set coming first. This implies // that all uses are by instructions rather than phi nodes. bool is_local_to_ebb () const;
// List all the uses of the set, in the order described above. iterator_range<use_iterator> all_uses () const;
// Return uses () in reverse order. iterator_range<reverse_use_iterator> reverse_all_uses () const;
// List the uses of the set by nondebug instructions, in reverse postorder. iterator_range<nondebug_insn_use_iterator> nondebug_insn_uses () const;
// Return nondebug_insn_uses () in reverse order. iterator_range<reverse_use_iterator> reverse_nondebug_insn_uses () const;
// List the uses of the set by any kind of instruction. The list follows // the order described above. iterator_range<any_insn_use_iterator> all_insn_uses () const;
// List the uses of the set by phi nodes, in no particular order. // There is therefore no reversed equivalent of this list. iterator_range<phi_use_iterator> phi_uses () const;
// Print a description of the set to PP under the control of // PP_ACCESS_* flags FLAGS. void print (pretty_printer *pp, unsigned int flags = PP_ACCESS_DEFAULT) const;
protected: set_info (insn_info *, resource_info, access_kind);
// Print information about uses () to PP, continuing information printed // about the set itself. void print_uses_on_new_lines (pretty_printer *pp) const;
private: // Sets (including phis) account for about 94% of all definitions
set_info (insn_info *, resource_info);
void set_first_use (use_info *);
// The first use in the list. use_info *m_first_use;
// The root of a splay tree of all uses, built lazily when we first // think it's needed. use_splay_tree m_use_tree; };
// A set_info for an on-the-side phi node. The phi node is attached // to an extended basic block EBB and has one input for each incoming edge. // The inputs are represented as an array of use_infos, with input I // corresponding to EDGE_PRED (EBB->first_bb ()->cfg_bb (), I). // // Each phi node has a densely-allocated unique identifier, which is intended // to be suitable for bitmaps or sbitmaps. // // All the phi nodes in an extended basic block are chained together // into a linked list. The list has no particular order. class phi_info : public set_info { // Overall size: 8 LP64 words friend class function_info;
public: // Return the previous and next phi nodes in the extended basic block's list, // or null if none. phi_info *prev_phi () const { return m_prev_phi; } phi_info *next_phi () const { return m_next_phi; }
// Return the number of phi inputs. This is 1 for degenerate phis, // otherwise it is equal to the number of incoming edges. unsigned int num_inputs () const { return m_num_inputs; }
// Return true if the phi node is degenerate, i.e. if it has only a // single input. bool is_degenerate () const { return m_num_inputs == 1; }
// Return the phi node's unique identifier. unsigned int uid () const { return m_uid; }
// Return the array of inputs. For degenerate phi nodes, this array contains // a single element, otherwise it has one input per incoming edge, // with element E corresponding to incoming edge E. use_array inputs () const;
// Return the use_info that describes the phi input for incoming edge E. use_info *input_use (unsigned int e) const;
// Return the value of resource () on incoming edge E, or null if the // value is completely undefined for that edge. set_info *input_value (unsigned int e) const;
// Print a description of the phi node to PP under the control of // PP_ACCESS_* flags FLAGS. void print (pretty_printer *pp, unsigned int flags = PP_ACCESS_DEFAULT) const;
private: phi_info (insn_info *insn, resource_info resource, unsigned int uid);
void make_degenerate (use_info *); void set_inputs (use_array inputs); void set_prev_phi (phi_info *prev_phi) { m_prev_phi = prev_phi; } void set_next_phi (phi_info *next_phi) { m_next_phi = next_phi; } void clear_phi_links () { m_prev_phi = m_next_phi = nullptr; } bool has_phi_links () { return m_prev_phi || m_next_phi; }
// The values returned by the accessors above. unsigned int m_uid; unsigned int m_num_inputs; union { access_info *const *m_inputs; access_info *m_single_input; }; phi_info *m_prev_phi; phi_info *m_next_phi; };
// An iterator for lists of phi nodes. using phi_iterator = list_iterator<phi_info, &phi_info::next_phi>;
// One node in a splay tree of definitions. This base class represents // a single def_info, but it is structured to allow derived classes // to add a range. class def_node { // Size: 3 LP64 words. friend class function_info; friend class default_splay_tree_accessors<def_node *>;
public: // Return the first definition that the node represents. def_info *first_def () const;
// Return which type of access first_def () is. bool contains_clobber () const { return m_clobber_or_set.is_first (); } bool contains_set () const { return m_clobber_or_set.is_second (); }
protected: // More nodes are clobbers rather than sets, so put clobbers first. // Neither choice can be null. using clobber_or_set = pointer_mux<clobber_info, set_info>;
// Construct a node that represents FIRST_DEF (and possibly later // definitions too, if called from a derived class). def_node (clobber_or_set first_def);
// The first definition in the node. clobber_or_set m_clobber_or_set;
private: // The splay tree child nodes. def_node *m_children[2]; };
// One node in a splay tree of def_infos, representing a single set_info. class set_node : public def_node { // Overall size: 3 LP64 words. friend class function_info;
public: // Return the set that the node contains. set_info *set () const { return m_clobber_or_set.known_second (); }
// Print a description of the node to PP. void print (pretty_printer *pp) const;
private: // Construct a node for SET. set_node (set_info *set) : def_node (set) {} };
// One node in a splay tree of def_infos. This class represents // a list of contiguous clobber_infos, in execution order. class clobber_group : public def_node { // Overall size: 5 LP64 words. friend class function_info;
public: // Return the first and last clobbers in the group. The results are // always nonnull. clobber_info *first_clobber () const; clobber_info *last_clobber () const { return m_last_clobber; }
// Return the last clobber before INSN in the group, or null if none. clobber_info *prev_clobber (insn_info *insn) const;
// Return the next clobber after INSN in the group, or null if none. clobber_info *next_clobber (insn_info *insn) const;
// Return true if this group has been replaced by new clobber_groups. bool has_been_superceded () const { return !m_last_clobber; }
// Return a list of the clobbers in the group, in execution order. iterator_range<def_iterator> clobbers () const;
// Print a description of the group to PP. void print (pretty_printer *pp) const;
private: clobber_group (clobber_info *clobber);
// Set the values of first_clobber () and last_clobber (). void set_first_clobber (clobber_info *c) { m_clobber_or_set = c; } void set_last_clobber (clobber_info *c) { m_last_clobber = c; }
// The value returned by last_clobber (). clobber_info *m_last_clobber;
// A splay tree that contains all the clobbers in the group. // The root of the splay tree always has an up-to-date group // pointer, but the other clobbers in the tree might not. clobber_tree m_clobber_tree; };
// A splay tree in which one node represents a standalone set_info or a // range of consecutive clobber_infos. The nodes follow execution order // and maintain the invariant that no two groups of clobber_infos appear // next to each other (instead, the groups are merged). using def_splay_tree = default_splay_tree<def_node *>;
// This type represents a choice between: // // (1) a single definition of a resource // (2) a node in a def_splay_tree that represents either a single // set or a group of clobbers. class def_mux : public pointer_mux<def_info, def_node> { using parent = pointer_mux<def_info, def_node>;
// Provide the same constructors as the pointer_mux. using parent::parent;
public: // Return the first definition associated with this mux. If the mux holds // a single definition, the result is that definition. If the mux holds // a clobber_group, the result is the first clobber in the group. def_info *first_def () const;
// Return the last definition associated with this mux. If the mux holds // a single definition, the result is that definition. If the mux holds // a clobber_group, the result is the last clobber in the group. def_info *last_def () const;
// If the pointer represents a set_info, return that set_info, // otherwise return null. set_info *set () const; };
// This class represents the result of looking up the definition of a // resource at a particular point, here referred to as point P. // There are four states: // // - MUX is null if there were no definitions to search. // // - Otherwise, COMPARISON is 0 if we found a definition at P or a // clobber_group that spans P. MUX then contains this definition // or clobber_group. // // - Otherwise, COMPARISON is greater than 0 if we found the definition // that precedes P or the group of clobbers that precedes P. MUX then // contains this definition or clobber_group. // // - Otherwise, COMPARISON is less than zero and we found the definition // that follows P, or the group of clobbers that follows P. MUX then // contains this definition or clobber_group. class def_lookup { public: // If we found a clobber_group that spans P, return the definition // that precedes the start of the group, or null if none. // // Otherwise, return the last definition that occurs before P, // or null if none. def_info *last_def_of_prev_group () const;
// If we found a clobber_group that spans P, return the definition // that follows the end of the group, or null if none. // // Otherwise, return the first definition that occurs after P, // or null if none. def_info *first_def_of_next_group () const;
// If we found a set_info at P, return that set_info, otherwise return null. set_info *matching_set () const;
// If we found a set_info at P, return that set_info, otherwise return // prev_def (). def_info *matching_set_or_last_def_of_prev_group () const;
// If we found a set_info at P, return that set_info, otherwise return // next_def (). def_info *matching_set_or_first_def_of_next_group () const;
// P is the location of INSN. Return the last definition (of any kind) // that occurs before INSN, or null if none. def_info *prev_def (insn_info *insn) const;
// P is the location of INSN. Return the next definition (of any kind) // that occurs after INSN, or null if none. def_info *next_def (insn_info *insn) const;
def_mux mux; int comparison; };
void pp_resource (pretty_printer *, resource_info); void pp_access (pretty_printer *, const access_info *, unsigned int flags = PP_ACCESS_DEFAULT); void pp_accesses (pretty_printer *, access_array, unsigned int flags = PP_ACCESS_DEFAULT); void pp_def_node (pretty_printer *, const def_node *); void pp_def_mux (pretty_printer *, def_mux); void pp_def_lookup (pretty_printer *, def_lookup);
}
void dump (FILE *, rtl_ssa::resource_info); void dump (FILE *, const rtl_ssa::access_info *, unsigned int flags = rtl_ssa::PP_ACCESS_DEFAULT); void dump (FILE *, rtl_ssa::access_array, unsigned int flags = rtl_ssa::PP_ACCESS_DEFAULT); void dump (FILE *, const rtl_ssa::def_node *); void dump (FILE *, rtl_ssa::def_mux); void dump (FILE *, rtl_ssa::def_lookup);
void DEBUG_FUNCTION debug (const rtl_ssa::resource_info *); void DEBUG_FUNCTION debug (const rtl_ssa::access_info *); void DEBUG_FUNCTION debug (const rtl_ssa::access_array); void DEBUG_FUNCTION debug (const rtl_ssa::def_node *); void DEBUG_FUNCTION debug (const rtl_ssa::def_mux &); void DEBUG_FUNCTION debug (const rtl_ssa::def_lookup &);
|